These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 19646509)
1. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Cho KJ; Lee BI; Cheon SY; Kim HW; Kim HJ; Kim GW Neuroscience; 2009 Nov; 163(4):1128-34. PubMed ID: 19646509 [TBL] [Abstract][Full Text] [Related]
2. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Van Raamsdonk JM; Murphy Z; Slow EJ; Leavitt BR; Hayden MR Hum Mol Genet; 2005 Dec; 14(24):3823-35. PubMed ID: 16278236 [TBL] [Abstract][Full Text] [Related]
3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655 [TBL] [Abstract][Full Text] [Related]
4. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600 [TBL] [Abstract][Full Text] [Related]
5. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease. Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318 [TBL] [Abstract][Full Text] [Related]
6. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958 [TBL] [Abstract][Full Text] [Related]
7. The selective vulnerability of nerve cells in Huntington's disease. Sieradzan KA; Mann DM Neuropathol Appl Neurobiol; 2001 Feb; 27(1):1-21. PubMed ID: 11298997 [TBL] [Abstract][Full Text] [Related]
8. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. Gharami K; Xie Y; An JJ; Tonegawa S; Xu B J Neurochem; 2008 Apr; 105(2):369-79. PubMed ID: 18086127 [TBL] [Abstract][Full Text] [Related]
9. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration. Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462 [TBL] [Abstract][Full Text] [Related]
10. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease. Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. Mende-Mueller LM; Toneff T; Hwang SR; Chesselet MF; Hook VY J Neurosci; 2001 Mar; 21(6):1830-7. PubMed ID: 11245667 [TBL] [Abstract][Full Text] [Related]
12. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Hodgson JG; Agopyan N; Gutekunst CA; Leavitt BR; LePiane F; Singaraja R; Smith DJ; Bissada N; McCutcheon K; Nasir J; Jamot L; Li XJ; Stevens ME; Rosemond E; Roder JC; Phillips AG; Rubin EM; Hersch SM; Hayden MR Neuron; 1999 May; 23(1):181-92. PubMed ID: 10402204 [TBL] [Abstract][Full Text] [Related]
13. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease. Bithell A; Johnson R; Buckley NJ Biochem Soc Trans; 2009 Dec; 37(Pt 6):1270-5. PubMed ID: 19909260 [TBL] [Abstract][Full Text] [Related]
15. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease. Zuleta A; Vidal RL; Armentano D; Parsons G; Hetz C Biochem Biophys Res Commun; 2012 Apr; 420(3):558-63. PubMed ID: 22445760 [TBL] [Abstract][Full Text] [Related]
16. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. Laforet GA; Sapp E; Chase K; McIntyre C; Boyce FM; Campbell M; Cadigan BA; Warzecki L; Tagle DA; Reddy PH; Cepeda C; Calvert CR; Jokel ES; Klapstein GJ; Ariano MA; Levine MS; DiFiglia M; Aronin N J Neurosci; 2001 Dec; 21(23):9112-23. PubMed ID: 11717344 [TBL] [Abstract][Full Text] [Related]
17. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. Van Raamsdonk JM; Pearson J; Murphy Z; Hayden MR; Leavitt BR BMC Neurosci; 2006 Dec; 7():80. PubMed ID: 17147801 [TBL] [Abstract][Full Text] [Related]
18. Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death. Roze E; Betuing S; Deyts C; Marcon E; Brami-Cherrier K; Pagès C; Humbert S; Mérienne K; Caboche J FASEB J; 2008 Apr; 22(4):1083-93. PubMed ID: 18029446 [TBL] [Abstract][Full Text] [Related]
19. Selective degeneration in YAC mouse models of Huntington disease. Van Raamsdonk JM; Warby SC; Hayden MR Brain Res Bull; 2007 Apr; 72(2-3):124-31. PubMed ID: 17352936 [TBL] [Abstract][Full Text] [Related]
20. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. McBride JL; Ramaswamy S; Gasmi M; Bartus RT; Herzog CD; Brandon EP; Zhou L; Pitzer MR; Berry-Kravis EM; Kordower JH Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9345-50. PubMed ID: 16751280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]