BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 19646509)

  • 1. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease.
    Cho KJ; Lee BI; Cheon SY; Kim HW; Kim HJ; Kim GW
    Neuroscience; 2009 Nov; 163(4):1128-34. PubMed ID: 19646509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease.
    Van Raamsdonk JM; Murphy Z; Slow EJ; Leavitt BR; Hayden MR
    Hum Mol Genet; 2005 Dec; 14(24):3823-35. PubMed ID: 16278236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin.
    Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM
    Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease.
    Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF
    Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The selective vulnerability of nerve cells in Huntington's disease.
    Sieradzan KA; Mann DM
    Neuropathol Appl Neurobiol; 2001 Feb; 27(1):1-21. PubMed ID: 11298997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice.
    Gharami K; Xie Y; An JJ; Tonegawa S; Xu B
    J Neurochem; 2008 Apr; 105(2):369-79. PubMed ID: 18086127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration.
    Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B
    J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.
    Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y
    Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum.
    Mende-Mueller LM; Toneff T; Hwang SR; Chesselet MF; Hook VY
    J Neurosci; 2001 Mar; 21(6):1830-7. PubMed ID: 11245667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration.
    Hodgson JG; Agopyan N; Gutekunst CA; Leavitt BR; LePiane F; Singaraja R; Smith DJ; Bissada N; McCutcheon K; Nasir J; Jamot L; Li XJ; Stevens ME; Rosemond E; Roder JC; Phillips AG; Rubin EM; Hersch SM; Hayden MR
    Neuron; 1999 May; 23(1):181-92. PubMed ID: 10402204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.
    Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM
    Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease.
    Bithell A; Johnson R; Buckley NJ
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1270-5. PubMed ID: 19909260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease.
    Zuleta A; Vidal RL; Armentano D; Parsons G; Hetz C
    Biochem Biophys Res Commun; 2012 Apr; 420(3):558-63. PubMed ID: 22445760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease.
    Laforet GA; Sapp E; Chase K; McIntyre C; Boyce FM; Campbell M; Cadigan BA; Warzecki L; Tagle DA; Reddy PH; Cepeda C; Calvert CR; Jokel ES; Klapstein GJ; Ariano MA; Levine MS; DiFiglia M; Aronin N
    J Neurosci; 2001 Dec; 21(23):9112-23. PubMed ID: 11717344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease.
    Van Raamsdonk JM; Pearson J; Murphy Z; Hayden MR; Leavitt BR
    BMC Neurosci; 2006 Dec; 7():80. PubMed ID: 17147801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death.
    Roze E; Betuing S; Deyts C; Marcon E; Brami-Cherrier K; Pagès C; Humbert S; Mérienne K; Caboche J
    FASEB J; 2008 Apr; 22(4):1083-93. PubMed ID: 18029446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective degeneration in YAC mouse models of Huntington disease.
    Van Raamsdonk JM; Warby SC; Hayden MR
    Brain Res Bull; 2007 Apr; 72(2-3):124-31. PubMed ID: 17352936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease.
    McBride JL; Ramaswamy S; Gasmi M; Bartus RT; Herzog CD; Brandon EP; Zhou L; Pitzer MR; Berry-Kravis EM; Kordower JH
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9345-50. PubMed ID: 16751280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.