These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19646539)

  • 1. Event-related functional MRI of cortical activity evoked by microsaccades, small visually-guided saccades, and eyeblinks in human visual cortex.
    Tse PU; Baumgartner FJ; Greenlee MW
    Neuroimage; 2010 Jan; 49(1):805-16. PubMed ID: 19646539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsaccade rate varies with subjective visibility during motion-induced blindness.
    Hsieh PJ; Tse PU
    PLoS One; 2009; 4(4):e5163. PubMed ID: 19357789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A BOLD signature of eyeblinks in the visual cortex.
    Hupé JM; Bordier C; Dojat M
    Neuroimage; 2012 May; 61(1):149-61. PubMed ID: 22426351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraretinal saccadic signals in human LGN and early retinotopic cortex.
    Sylvester R; Rees G
    Neuroimage; 2006 Mar; 30(1):214-9. PubMed ID: 16226468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation.
    Sylvester R; Haynes JD; Rees G
    Curr Biol; 2005 Jan; 15(1):37-41. PubMed ID: 15649362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsaccade directions do not predict directionality of illusory brightness changes of overlapping transparent surfaces.
    Tse PU; Caplovitz GP; Hsieh PJ
    Vision Res; 2006 Oct; 46(22):3823-30. PubMed ID: 16934310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex.
    Leopold DA; Logothetis NK
    Exp Brain Res; 1998 Dec; 123(3):341-5. PubMed ID: 9860273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cross-modal interaction between pain-related and saccade-related cerebral activation: a preliminary study by event-related functional magnetic resonance imaging.
    Kurata J; Thulborn KR; Firestone LL
    Anesth Analg; 2005 Aug; 101(2):449-456. PubMed ID: 16037161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation.
    Meirovithz E; Ayzenshtat I; Werner-Reiss U; Shamir I; Slovin H
    Cereb Cortex; 2012 Feb; 22(2):294-307. PubMed ID: 21653284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator.
    Otero-Millan J; Troncoso XG; Macknik SL; Serrano-Pedraza I; Martinez-Conde S
    J Vis; 2008 Dec; 8(14):21.1-18. PubMed ID: 19146322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual states and switches.
    Hsieh PJ; Caplovitz GP; Tse PU
    Neuroimage; 2006 Aug; 32(2):728-39. PubMed ID: 16702003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI.
    DeSouza JF; Menon RS; Everling S
    J Neurophysiol; 2003 Feb; 89(2):1016-23. PubMed ID: 12574477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shortening and prolongation of saccade latencies following microsaccades.
    Rolfs M; Laubrock J; Kliegl R
    Exp Brain Res; 2006 Mar; 169(3):369-76. PubMed ID: 16328308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different spatial organizations of saccade related BOLD-activation in parietal and striate cortex.
    Rieger JW; Schoenfeld MA; Heinze HJ; Bodis-Wollner I
    Brain Res; 2008 Oct; 1233():89-97. PubMed ID: 18710650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening.
    Gawne TJ; Martin JM
    J Neurophysiol; 2002 Nov; 88(5):2178-86. PubMed ID: 12424259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical functional anatomy of voluntary saccades in Parkinson disease.
    Rieger JW; Kim A; Argyelan M; Farber M; Glazman S; Liebeskind M; Meyer T; Bodis-Wollner I
    Clin EEG Neurosci; 2008 Oct; 39(4):169-74. PubMed ID: 19044213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Motion Processing in Human Visual Cortical Areas V2 and V3.
    Furlan M; Smith AT
    J Neurosci; 2016 Jul; 36(27):7314-24. PubMed ID: 27383603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient and sustained effects of stimulus properties on the generation of microsaccades.
    Amit R; Abeles D; Yuval-Greenberg S
    J Vis; 2019 Jan; 19(1):6. PubMed ID: 30640374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception.
    Wu Y; Wang T; Zhou T; Li Y; Yang Y; Dai W; Zhang Y; Han C; Xing D
    Nat Commun; 2022 Oct; 13(1):6366. PubMed ID: 36289224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.