BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 19646687)

  • 1. Feature extraction and dimensionality reduction for mass spectrometry data.
    Liu Y
    Comput Biol Med; 2009 Sep; 39(9):818-23. PubMed ID: 19646687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection.
    Yasui Y; Pepe M; Thompson ML; Adam BL; Wright GL; Qu Y; Potter JD; Winget M; Thornquist M; Feng Z
    Biostatistics; 2003 Jul; 4(3):449-63. PubMed ID: 12925511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support vector machine approach to separate control and breast cancer serum samples.
    Pham TV; van de Wiel MA; Jimenez CR
    Stat Appl Genet Mol Biol; 2008; 7(2):Article11. PubMed ID: 18312216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest.
    Datta S
    Stat Appl Genet Mol Biol; 2008; 7(2):Article7. PubMed ID: 18312221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wavelet-based data pre-processing analysis approach in mass spectrometry.
    Li X; Li J; Yao X
    Comput Biol Med; 2007 Apr; 37(4):509-16. PubMed ID: 16982045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale processing of mass spectrometry data.
    Randolph TW; Yasui Y
    Biometrics; 2006 Jun; 62(2):589-97. PubMed ID: 16918924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls.
    Barrett JH; Cairns DA
    Stat Appl Genet Mol Biol; 2008; 7(2):Article4. PubMed ID: 18312218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended Markov blanket approach to proteomic biomarker detection from high-resolution mass spectrometry data.
    Oh JH; Gurnani P; Schorge J; Rosenblatt KP; Gao JX
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):195-206. PubMed ID: 19126475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data.
    Yu JS; Ongarello S; Fiedler R; Chen XW; Toffolo G; Cobelli C; Trajanoski Z
    Bioinformatics; 2005 May; 21(10):2200-9. PubMed ID: 15784749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data review and re-assessment of ovarian cancer serum proteomic profiling.
    Sorace JM; Zhan M
    BMC Bioinformatics; 2003 Jun; 4():24. PubMed ID: 12795817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data.
    Park Y; Downing SR; Kim D; Hahn WC; Li C; Kantoff PW; Wei LJ
    Bioinformatics; 2007 Jun; 23(12):1451-8. PubMed ID: 17459967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian model selection for mining mass spectrometry data.
    Saksena A; Lucarelli D; Wang IJ
    Neural Netw; 2005; 18(5-6):843-9. PubMed ID: 16139743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection.
    Hong YJ; Wang XD; Shen D; Zeng S
    Acta Pharmacol Sin; 2008 Oct; 29(10):1240-6. PubMed ID: 18817630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data mining techniques for cancer detection using serum proteomic profiling.
    Li L; Tang H; Wu Z; Gong J; Gruidl M; Zou J; Tockman M; Clark RA
    Artif Intell Med; 2004 Oct; 32(2):71-83. PubMed ID: 15364092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a discrimination rule between breast cancer patients and controls using proteomics mass spectrometric data: a three-step approach.
    Heidema AG; Nagelkerke N
    Stat Appl Genet Mol Biol; 2008; 7(2):Article5. PubMed ID: 18312219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of biomarkers from mass spectrometry data using a "common" peak approach.
    Fushiki T; Fujisawa H; Eguchi S
    BMC Bioinformatics; 2006 Jul; 7():358. PubMed ID: 16869977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guilt-by-association feature selection: identifying biomarkers from proteomic profiles.
    Shin H; Sheu B; Joseph M; Markey MK
    J Biomed Inform; 2008 Feb; 41(1):124-36. PubMed ID: 17544868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: a case-control study.
    Callesen AK; Vach W; Jørgensen PE; Cold S; Tan Q; Depont Christensen R; Mogensen O; Kruse TA; Jensen ON; Madsen JS
    J Proteome Res; 2008 Apr; 7(4):1419-26. PubMed ID: 18303830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic studies of early-stage and advanced ovarian cancer patients.
    Wang J; Zhang X; Ge X; Guo H; Xiong G; Zhu Y
    Gynecol Oncol; 2008 Oct; 111(1):111-9. PubMed ID: 18703221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.