BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19646702)

  • 1. Finite element model development of a child pelvis with optimization-based material identification.
    Kim JE; Li Z; Ito Y; Huber CD; Shih AM; Eberhardt AW; Yang KH; King AI; Soni BK
    J Biomech; 2009 Sep; 42(13):2191-5. PubMed ID: 19646702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of optimization methodology and specimen-specific finite element models for investigating material properties of rat skull.
    Guan F; Han X; Mao H; Wagner C; Yeni YN; Yang KH
    Ann Biomed Eng; 2011 Jan; 39(1):85-95. PubMed ID: 20652748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model.
    Leung AS; Gordon LM; Skrinskas T; Szwedowski T; Whyne CM
    Proc Inst Mech Eng H; 2009 Nov; 223(8):965-79. PubMed ID: 20092094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A subject-specific pelvic bone model and its application to cemented acetabular replacements.
    Zhang QH; Wang JY; Lupton C; Heaton-Adegbile P; Guo ZX; Liu Q; Tong J
    J Biomech; 2010 Oct; 43(14):2722-7. PubMed ID: 20655051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development, validation, and application of a parametric pediatric head finite element model for impact simulations.
    Li Z; Hu J; Reed MP; Rupp JD; Hoff CN; Zhang J; Cheng B
    Ann Biomed Eng; 2011 Dec; 39(12):2984-97. PubMed ID: 21947736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis.
    O'Rourke D; Martelli S; Bottema M; Taylor M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27685017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of density-elasticity relationships for finite element modeling of human pelvic bone by modal analysis.
    Scholz R; Hoffmann F; von Sachsen S; Drossel WG; Klöhn C; Voigt C
    J Biomech; 2013 Oct; 46(15):2667-73. PubMed ID: 24001928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material model of pelvic bone based on modal analysis: a study on the composite bone.
    Henyš P; Čapek L
    Biomech Model Mechanobiol; 2017 Feb; 16(1):363-373. PubMed ID: 27561650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M; Hansen UN; Amis AA
    Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data.
    Kallemeyn N; Gandhi A; Kode S; Shivanna K; Smucker J; Grosland N
    Med Eng Phys; 2010 Jun; 32(5):482-9. PubMed ID: 20392660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a biofidelic computational model of human pelvis for predicting biomechanical responses and pelvic fractures.
    Zeng W; Mukherjee S; Neice R; Salzar RS; Panzer MB
    Comput Biol Med; 2024 Mar; 170():107986. PubMed ID: 38262201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone.
    Shim VB; Battley M; Anderson IA; Munro JT
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1495-9. PubMed ID: 24870395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.