BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1964767)

  • 21. Development of an enzymatic assay to measure lactate in perchloric acid-precipitated cerebrospinal fluid.
    Lu J; Genzen JR; Grenache DG
    Clin Chim Acta; 2018 Aug; 483():142-144. PubMed ID: 29709451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria.
    Kurosawa K; Shibata H; Hayashi N; Sato N; Kamada T; Tagawa K
    J Biochem; 1990 Jul; 108(1):9-16. PubMed ID: 2229015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure.
    Zerez CR; Lee SJ; Tanaka KR
    Anal Biochem; 1987 Aug; 164(2):367-73. PubMed ID: 3674385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of catalase and glutathione peroxidase to red cell peroxide removal.
    Nicholis P
    Biochim Biophys Acta; 1972 Sep; 279(2):306-9. PubMed ID: 5082500
    [No Abstract]   [Full Text] [Related]  

  • 25. A METHODOLOGICAL STUDY OF THE ENZYMATIC DETERMINATION OF GLUCOSE IN BLOOD.
    HJELM M; DE VERDIERCH CH
    Scand J Clin Lab Invest; 1963; 15():415-28. PubMed ID: 14073292
    [No Abstract]   [Full Text] [Related]  

  • 26. Pyruvate flux into resealed ghosts from human erythrocytes.
    Rice WR; Steck TL
    Biochim Biophys Acta; 1976 Apr; 433(1):39-53. PubMed ID: 4147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regeneration of reduced glutathione in erythrocytes: stoichiometric and temporal relationship to hexose monophosphate shunt activity.
    Metz EN; Balcerzak SP; Sagone AL
    Blood; 1974 Nov; 44(5):691-7. PubMed ID: 4422338
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic oxidation of mercury vapor by erythrocytes.
    Halbach S; Clarkson TW
    Biochim Biophys Acta; 1978 Apr; 523(2):522-31. PubMed ID: 656439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyruvate improves deleterious effects of high glucose on activation of pentose phosphate pathway and glutathione redox cycle in endothelial cells.
    Kashiwagi A; Nishio Y; Asahina T; Ikebuchi M; Harada N; Tanaka Y; Takahara N; Taki H; Obata T; Hidaka H; Saeki Y; Kikkawa R
    Diabetes; 1997 Dec; 46(12):2088-95. PubMed ID: 9392501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile.
    Kobayashi Y; Hirano S
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):33-40. PubMed ID: 18619986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione level after long-term occupational elemental mercury exposure.
    Kobal AB; Prezelj M; Horvat M; Krsnik M; Gibicar D; Osredkar J
    Environ Res; 2008 May; 107(1):115-23. PubMed ID: 17706633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. H2O2 injury in beta thalassemic erythrocytes: protective role of catalase and the prooxidant effects of GSH.
    Scott MD
    Free Radic Biol Med; 2006 Apr; 40(7):1264-72. PubMed ID: 16545695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood glutathione oxidation during human exercise.
    Gohil K; Viguie C; Stanley WC; Brooks GA; Packer L
    J Appl Physiol (1985); 1988 Jan; 64(1):115-9. PubMed ID: 3356628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative precipitation of hemoglobin H and its relation to reduced glutathione.
    Gabuzda TG; Laforet MT; Gardner FH
    J Lab Clin Med; 1967 Oct; 70(4):581-94. PubMed ID: 4383214
    [No Abstract]   [Full Text] [Related]  

  • 38. Simultaneous detection of NADPH consumption and H
    Morlock LK; Böttcher D; Bornscheuer UT
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):985-994. PubMed ID: 29150709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of action of divicine in a cell-free system and in glucose-6-phosphate dehydrogenase-deficient red cells.
    Baker MA; Bosia A; Pescarmona G; Turrini F; Arese P
    Toxicol Pathol; 1984; 12(4):331-6. PubMed ID: 6099911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methemoglobin formation and reduction in canine erythrocytes characterized by inherited high Na+, K(+)-ATPase activity with normal and high glutathione concentrations.
    Ogawa E; Horii Y; Honda M; Takahashi R
    J Vet Med Sci; 1994 Oct; 56(5):873-7. PubMed ID: 7865586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.