These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 19647737)
1. Structural basis of the antifungal activity of wheat PR4 proteins. Bertini L; Caporale C; Testa M; Proietti S; Caruso C FEBS Lett; 2009 Sep; 583(17):2865-71. PubMed ID: 19647737 [TBL] [Abstract][Full Text] [Related]
2. Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. Caporale C; Di Berardino I; Leonardi L; Bertini L; Cascone A; Buonocore V; Caruso C FEBS Lett; 2004 Sep; 575(1-3):71-6. PubMed ID: 15388335 [TBL] [Abstract][Full Text] [Related]
3. Modular structure of HEL protein from Arabidopsis reveals new potential functions for PR-4 proteins. Bertini L; Proietti S; Aleandri MP; Mondello F; Sandini S; Caporale C Biol Chem; 2012 Aug; 0(0):1-14. PubMed ID: 22868784 [TBL] [Abstract][Full Text] [Related]
4. Recombinant wheat antifungal PR4 proteins expressed in Escherichia coli. Caruso C; Bertini L; Tucci M; Caporale C; Nobile M; Leonardi L; Buonocore V Protein Expr Purif; 2001 Dec; 23(3):380-8. PubMed ID: 11722174 [TBL] [Abstract][Full Text] [Related]
5. Comparing the modeled structures of PR-4 proteins from wheat. Caporale C; Facchiano A; Bertini L; Leonardi L; Chilosi G; Buonocore V; Caruso C J Mol Model; 2003 Feb; 9(1):9-15. PubMed ID: 12638007 [TBL] [Abstract][Full Text] [Related]
6. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. Caruso C; Caporale C; Chilosi G; Vacca F; Bertini L; Magro P; Poerio E; Buonocore V J Protein Chem; 1996 Jan; 15(1):35-44. PubMed ID: 8838588 [TBL] [Abstract][Full Text] [Related]
7. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Vijayan S; Imani J; Tanneeru K; Guruprasad L; Kogel KH; Kirti PB Peptides; 2012 Feb; 33(2):220-9. PubMed ID: 22244814 [TBL] [Abstract][Full Text] [Related]
8. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. Anand A; Lei Z; Sumner LW; Mysore KS; Arakane Y; Bockus WW; Muthukrishnan S Mol Plant Microbe Interact; 2004 Dec; 17(12):1306-17. PubMed ID: 15597736 [TBL] [Abstract][Full Text] [Related]
9. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Wang X; Bunkers GJ Biochem Biophys Res Commun; 2000 Dec; 279(2):669-73. PubMed ID: 11118343 [TBL] [Abstract][Full Text] [Related]
10. In silico prediction of active site and in vitro DNase and RNase activities of Helicoverpa-inducible pathogenesis related-4 protein from Cicer arietinum. Singh A; Jain D; Tyagi C; Singh S; Kumar S; Singh IK Int J Biol Macromol; 2018 Jul; 113():869-880. PubMed ID: 29524486 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Fusarium spp. and Microdochium spp. PCR assays to evaluate seed treatments for the control of Fusarium seedling blight of wheat. Glynn NC; Ray R; Edwards SG; Hare MC; Parry DW; Barnett CJ; Beck JJ J Appl Microbiol; 2007 Jun; 102(6):1645-53. PubMed ID: 17578430 [TBL] [Abstract][Full Text] [Related]
12. Preventing Fusarium head blight of wheat and cob rot of maize by inhibition of fungal deoxyhypusine synthase. Woriedh M; Hauber I; Martinez-Rocha AL; Voigt C; Maier FJ; Schröder M; Meier C; Hauber J; Schäfer W Mol Plant Microbe Interact; 2011 May; 24(5):619-27. PubMed ID: 21463208 [TBL] [Abstract][Full Text] [Related]
13. Redesigning the reactive site loop of the wheat subtilisin/chymotrypsin inhibitor (WSCI) by site-directed mutagenesis. A protein-protein interaction study by affinity chromatography and molecular modeling. Bruni N; Di Maro A; Costantini S; Chambery A; Facchiano AM; Ficca AG; Parente A; Poerio E Biochimie; 2009 Sep; 91(9):1112-22. PubMed ID: 19500644 [TBL] [Abstract][Full Text] [Related]
14. gamma-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. Scarafoni A; Ronchi A; Duranti M Phytochemistry; 2010 Feb; 71(2-3):142-8. PubMed ID: 19962718 [TBL] [Abstract][Full Text] [Related]
15. The hydrophobic surface of PaAMP from pokeweed seeds is essential to its interaction with fungal membrane lipids and the antifungal activity. Peng C; Dong C; Hou Q; Xu C; Zhao J FEBS Lett; 2005 Apr; 579(11):2445-50. PubMed ID: 15848186 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. Ramos MV; de Oliveira RS; Pereira HM; Moreno FB; Lobo MD; Rebelo LM; Brandão-Neto J; de Sousa JS; Monteiro-Moreira AC; Freitas CD; Grangeiro TB Phytochemistry; 2015 Nov; 119():5-18. PubMed ID: 26456062 [TBL] [Abstract][Full Text] [Related]
17. A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Quilis J; Meynard D; Vila L; Avilés FX; Guiderdoni E; San Segundo B Plant Biotechnol J; 2007 Jul; 5(4):537-53. PubMed ID: 17547659 [TBL] [Abstract][Full Text] [Related]
18. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. Pollet A; Sansen S; Raedschelders G; Gebruers K; Rabijns A; Delcour JA; Courtin CM FEBS J; 2009 Jul; 276(14):3916-27. PubMed ID: 19769747 [TBL] [Abstract][Full Text] [Related]
19. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1. De Lucca AJ; Heden LO; Ingber B; Bhatnagar D J Agric Food Chem; 2011 Jul; 59(13):6933-9. PubMed ID: 21595494 [TBL] [Abstract][Full Text] [Related]
20. Growth suppression of Fusarium culmorum, Fusarium poae and Fusarium graminearum by 5-n-alk(en)ylresorcinols from wheat and rye bran. Patzke H; Zimdars S; Schulze-Kaysers N; Schieber A Food Res Int; 2017 Sep; 99(Pt 1):821-827. PubMed ID: 28784549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]