BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 19647748)

  • 21. Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway.
    Padrick SB; Miranker AD
    J Mol Biol; 2001 May; 308(4):783-94. PubMed ID: 11350174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains.
    del Pozo Yauner L; Ortiz E; Sánchez R; Sánchez-López R; Güereca L; Murphy CL; Allen A; Wall JS; Fernández-Velasco DA; Solomon A; Becerril B
    Proteins; 2008 Aug; 72(2):684-92. PubMed ID: 18260098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amyloid fibril formation by human stefin B: influence of pH and TFE on fibril growth and morphology.
    Zerovnik E; Skarabot M; Skerget K; Giannini S; Stoka V; Jenko-Kokalj S; Staniforth RA
    Amyloid; 2007 Sep; 14(3):237-47. PubMed ID: 17701471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the structure of the denatured state of lysozyme on the aggregation reaction at the early stages of folding from the reduced form.
    Ohkuri T; Shioi S; Imoto T; Ueda T
    J Mol Biol; 2005 Mar; 347(1):159-68. PubMed ID: 15733925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded.
    Weinreb PH; Zhen W; Poon AW; Conway KA; Lansbury PT
    Biochemistry; 1996 Oct; 35(43):13709-15. PubMed ID: 8901511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation.
    Bader R; Bamford R; Zurdo J; Luisi BF; Dobson CM
    J Mol Biol; 2006 Feb; 356(1):189-208. PubMed ID: 16364365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermolecular disulfide linkages are not required for transthyretin amyloid fibril formation in vitro.
    McCutchen SL; Kelly JW
    Biochem Biophys Res Commun; 1993 Dec; 197(2):415-21. PubMed ID: 8267575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis.
    Booth DR; Sunde M; Bellotti V; Robinson CV; Hutchinson WL; Fraser PE; Hawkins PN; Dobson CM; Radford SE; Blake CC; Pepys MB
    Nature; 1997 Feb; 385(6619):787-93. PubMed ID: 9039909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the C-terminal 28 residues of beta2-microglobulin in amyloid fibril formation.
    Ivanova MI; Gingery M; Whitson LJ; Eisenberg D
    Biochemistry; 2003 Nov; 42(46):13536-40. PubMed ID: 14622000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amyloid fibril formation by the CAD domain of caspase-activated DNase.
    Uegaki K; Nakamura T; Yamamoto H; Kobayashi A; Odahara T; Harata K; Hagihara Y; Ueyama N; Yamazaki T; Yumoto N
    Biopolymers; 2005 Sep; 79(1):39-47. PubMed ID: 15940676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single disulfide bond differentiates aggregation pathways of beta2-microglobulin.
    Chen Y; Dokholyan NV
    J Mol Biol; 2005 Nov; 354(2):473-82. PubMed ID: 16242719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lambda II immunoglobulin light chain protein in primary localized rectal amyloidosis.
    Zaky ZS; Liepnieks JJ; Rex DK; Cummings OW; Benson MD
    Amyloid; 2007 Dec; 14(4):299-304. PubMed ID: 17968691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and fibril formation properties of human and fish transthyretin, and of the Escherichia coli transthyretin-related protein.
    Lundberg E; Olofsson A; Westermark GT; Sauer-Eriksson AE
    FEBS J; 2009 Apr; 276(7):1999-2011. PubMed ID: 19250316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural models of amyloid-like fibrils.
    Nelson R; Eisenberg D
    Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic instability of human lambda 6 light chains: correlation with fibrillogenicity.
    Wall J; Schell M; Murphy C; Hrncic R; Stevens FJ; Solomon A
    Biochemistry; 1999 Oct; 38(42):14101-8. PubMed ID: 10529258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of beta(2)-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH.
    Hasegawa K; Tsutsumi-Yasuhara S; Ookoshi T; Ohhashi Y; Kimura H; Takahashi N; Yoshida H; Miyazaki R; Goto Y; Naiki H
    Biochem J; 2008 Dec; 416(2):307-15. PubMed ID: 18637792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation.
    Nerelius C; Fitzen M; Johansson J
    Biochem Biophys Res Commun; 2010 May; 396(1):2-6. PubMed ID: 20494101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alanine scanning mutagenesis of Abeta(1-40) amyloid fibril stability.
    Williams AD; Shivaprasad S; Wetzel R
    J Mol Biol; 2006 Apr; 357(4):1283-94. PubMed ID: 16476445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module.
    Litvinovich SV; Brew SA; Aota S; Akiyama SK; Haudenschild C; Ingham KC
    J Mol Biol; 1998 Jul; 280(2):245-58. PubMed ID: 9654449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis.
    Takahashi D; Matsunaga E; Yamashita T; Caaveiro JMM; Abe Y; Ueda T
    Biochem Biophys Res Commun; 2022 Mar; 596():22-28. PubMed ID: 35108650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.