These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19647790)
1. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Jaganath IB; Mullen W; Lean ME; Edwards CA; Crozier A Free Radic Biol Med; 2009 Oct; 47(8):1180-9. PubMed ID: 19647790 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation. Keppler K; Hein EM; Humpf HU Mol Nutr Food Res; 2006 Aug; 50(8):686-95. PubMed ID: 16835870 [TBL] [Abstract][Full Text] [Related]
3. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. Aura AM; O'Leary KA; Williamson G; Ojala M; Bailey M; Puupponen-Pimiä R; Nuutila AM; Oksman-Caldentey KM; Poutanen K J Agric Food Chem; 2002 Mar; 50(6):1725-30. PubMed ID: 11879065 [TBL] [Abstract][Full Text] [Related]
4. Electrospray ionisation mass spectrometric study of degradation products of quercetin, quercetin-3-glucoside and quercetin-3-rhamnoglucoside, produced by in vitro fermentation with human faecal flora. Justesen U; Arrigoni E Rapid Commun Mass Spectrom; 2001; 15(7):477-83. PubMed ID: 11268131 [TBL] [Abstract][Full Text] [Related]
5. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Yang J; Qian D; Jiang S; Shang EX; Guo J; Duan JA J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():95-100. PubMed ID: 22583754 [TBL] [Abstract][Full Text] [Related]
6. Effect of thermal processing on the flavonols rutin and quercetin. Buchner N; Krumbein A; Rohn S; Kroh LW Rapid Commun Mass Spectrom; 2006; 20(21):3229-35. PubMed ID: 17016866 [TBL] [Abstract][Full Text] [Related]
7. In vitro degradation of the flavonol quercetin and of quercetin glycosides in the porcine hindgut. Cermak R; Breves GM Arch Anim Nutr; 2006 Apr; 60(2):180-9. PubMed ID: 16649580 [TBL] [Abstract][Full Text] [Related]
8. [HPLC investigation of antioxidant components in Solidago herba]. Apáti P; Houghton PJ; Kéry A Acta Pharm Hung; 2004; 74(4):223-31. PubMed ID: 16316050 [TBL] [Abstract][Full Text] [Related]
9. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. Cerdá B; Periago P; Espín JC; Tomás-Barberán FA J Agric Food Chem; 2005 Jul; 53(14):5571-6. PubMed ID: 15998116 [TBL] [Abstract][Full Text] [Related]
10. In vitro colonic catabolism of orange juice (poly)phenols. Pereira-Caro G; Borges G; Ky I; Ribas A; Calani L; Del Rio D; Clifford MN; Roberts SA; Crozier A Mol Nutr Food Res; 2015 Mar; 59(3):465-75. PubMed ID: 25545994 [TBL] [Abstract][Full Text] [Related]
11. Anti- and pro-oxidant activity of rutin and quercetin derivatives. Kessler M; Ubeaud G; Jung L J Pharm Pharmacol; 2003 Jan; 55(1):131-42. PubMed ID: 12625877 [TBL] [Abstract][Full Text] [Related]
12. Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. Hur SJ; Park SJ; Jeong CH J Agric Food Chem; 2011 Oct; 59(19):10699-704. PubMed ID: 21882888 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-catalyzed change of antioxidants content and antioxidant activity of asparagus juice. Sun T; Powers JR; Tang J J Agric Food Chem; 2007 Jan; 55(1):56-60. PubMed ID: 17199313 [TBL] [Abstract][Full Text] [Related]
14. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157 [TBL] [Abstract][Full Text] [Related]
15. Catabolism of coffee chlorogenic acids by human colonic microbiota. Ludwig IA; Paz de Peña M; Concepción C; Alan C Biofactors; 2013; 39(6):623-32. PubMed ID: 23904092 [TBL] [Abstract][Full Text] [Related]
16. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds. Labib S; Hummel S; Richling E; Humpf HU; Schreier P Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of Rutin in In Vitro Porcine Ileal and Colonic Fermentation Models. Ulluwishewa D; Montoya CA; Mace L; Rettedal EA; Fraser K; McNabb WC; Moughan PJ; Roy NC J Agric Food Chem; 2023 Aug; 71(33):12487-12496. PubMed ID: 37578464 [TBL] [Abstract][Full Text] [Related]
18. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin. Uppugundla N; Engelberth A; Vandhana Ravindranath S; Clausen EC; Lay JO; Gidden J; Carrier DJ J Agric Food Chem; 2009 Sep; 57(17):7763-70. PubMed ID: 19691281 [TBL] [Abstract][Full Text] [Related]
19. Effect of bile acids on formation of the mutagen, quercetin, from two flavonol glycoside precursors by human gut bacterial preparations. Mader JA; Macdonald IA Mutat Res; 1985 Mar; 155(3):99-104. PubMed ID: 3883158 [TBL] [Abstract][Full Text] [Related]
20. Impact of Fermentable Fibres on the Colonic Microbiota Metabolism of Dietary Polyphenols Rutin and Quercetin. Mansoorian B; Combet E; Alkhaldy A; Garcia AL; Edwards CA Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]