BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19647922)

  • 21. Noninvasive phenotypic analysis of cardiovascular structure and function in fetal mice using ultrasound.
    Leatherbury L; Yu Q; Lo CW
    Birth Defects Res C Embryo Today; 2003 Feb; 69(1):83-91. PubMed ID: 12768660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swept-3-D Ultrasound Imaging of the Mouse Brain Using a Continuously Moving 1-D-Array-Part I: Doppler Imaging.
    Generowicz BS; Dijkhuizen S; De Zeeuw CI; Koekkoek SKE; Kruizinga P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Dec; 70(12):1714-1725. PubMed ID: 37788196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed, high-frequency ultrasound, in utero vector-flow imaging of mouse embryos.
    Ketterling JA; Aristizábal O; Yiu BYS; Turnbull DH; Phoon CKL; Yu ACH; Silverman RH
    Sci Rep; 2017 Nov; 7(1):16658. PubMed ID: 29192281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound transducers.
    Rizzatto G
    Eur J Radiol; 1998 May; 27 Suppl 2():S188-95. PubMed ID: 9652521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time, volumetric echocardiography: usefulness of volumetric scanning for the assessment of cardiac volume and function.
    Ota T; Kisslo J; von Ramm OT; Yoshikawa J
    J Cardiol; 2001; 37 Suppl 1():93-101. PubMed ID: 11433835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-frame rate duplex ultrasound biomicroscopy for small animal imaging in vivo.
    Sun L; Xu X; Richard WD; Feng C; Johnson JA; Shung KK
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2039-49. PubMed ID: 18632366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfabrication of electrode patterns for high-frequency ultrasound transducer arrays.
    Bernassau AL; García-Gancedo L; Hutson D; Démoré CE; McAneny JJ; Button TW; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1820-9. PubMed ID: 22899129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fetal mouse imaging using echocardiography: a review of current technology.
    Spurney CF; Lo CW; Leatherbury L
    Echocardiography; 2006 Nov; 23(10):891-9. PubMed ID: 17069613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Actifetus system: a multidoppler sensor system for monitoring fetal movements.
    Kribèche A; Tranquart F; Kouame D; Pourcelot L
    Ultrasound Med Biol; 2007 Mar; 33(3):430-8. PubMed ID: 17276580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Super-harmonic imaging: development of an interleaved phased-array transducer.
    van Neer PL; Matte G; Danilouchkine MG; Prins C; van den Adel F; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):455-68. PubMed ID: 20178912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initial experience with high frequency ultrasound for the newborn C57BL mouse.
    Bose AK; Mathewson JW; Anderson BE; Andrews AM; Martin Gerdes A; Benjamin Perryman M; Grossfeld PD
    Echocardiography; 2007 Apr; 24(4):412-9. PubMed ID: 17381652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology: A new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area.
    Buck T; Plicht B; Hunold P; Mucci RA; Erbel R; Levine RA
    J Am Coll Cardiol; 2005 Mar; 45(5):770-9. PubMed ID: 15734624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. WE-G-211-03: Development of Ultrasound Imaging Equipment.
    Zagzebski J
    Med Phys; 2012 Jun; 39(6Part28):3964. PubMed ID: 28519644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.
    Huang CC; Lee PY; Chen PY; Liu TY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):182-8. PubMed ID: 22293750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small Rodent Cardiac Phantom for Preclinical Ultrasound Imaging.
    Anderson T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):19-24. PubMed ID: 27479962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3-D Ultrasound Imaging Using Helicoid Array Transducers.
    Kim YJ; Wolf PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):697-706. PubMed ID: 32894714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guidance of cardiac pacemaker leads using real time 3D ultrasound: feasibility studies.
    Smith SW; Booi RC; Light ED; Merdes CL; Wolf PD
    Ultrason Imaging; 2002 Apr; 24(2):119-28. PubMed ID: 12199418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro Non-Uniform Linear Array (MNULA) for Ultrasound Plane Wave Imaging.
    Tang Y; Li Z; Cui Y; Yang C; Lv J; Jiao Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of Single-Channel Dual-Element Custom-Made Ultrasound Scanner with Miniature Optical Position Tracker for Freehand Imaging.
    Chen YL; Chiang HK
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile Single-Element Ultrasound Imaging Platform using a Water-Proofed MEMS Scanner for Animals and Humans.
    Choi S; Kim JY; Lim HG; Baik JW; Kim HH; Kim C
    Sci Rep; 2020 Apr; 10(1):6544. PubMed ID: 32300153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.