These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19647925)
1. Acoustic dose and acoustic dose-rate. Duck F Ultrasound Med Biol; 2009 Oct; 35(10):1679-85. PubMed ID: 19647925 [TBL] [Abstract][Full Text] [Related]
2. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force. Ergün AS Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear absorption in biological tissue for high intensity focused ultrasound. Liu X; Li J; Gong X; Zhang D Ultrasonics; 2006 Dec; 44 Suppl 1():e27-30. PubMed ID: 16844166 [TBL] [Abstract][Full Text] [Related]
4. Combining radiation force with cavitation for enhanced sonothrombolysis. Chuang YH; Cheng PW; Li PC IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916 [TBL] [Abstract][Full Text] [Related]
5. Stirring and mixing of liquids using acoustic radiation force. Sarvazyan A; Ostrovsky L J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936 [TBL] [Abstract][Full Text] [Related]
6. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations. Mitri FG; Fatemi M Ultrasonics; 2005 May; 43(6):435-45. PubMed ID: 15823318 [TBL] [Abstract][Full Text] [Related]
7. Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979 [TBL] [Abstract][Full Text] [Related]
8. Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles. Zhang S; Ding T; Wan M; Jiang H; Yang X; Zhong H; Wang S J Acoust Soc Am; 2011 Apr; 129(4):2336-44. PubMed ID: 21476689 [TBL] [Abstract][Full Text] [Related]
9. A model for sound absorption by spheroidal particles. Hipp AK J Acoust Soc Am; 2009 Jun; 125(6):3526-38. PubMed ID: 19507934 [TBL] [Abstract][Full Text] [Related]
10. Validity of a modified Born approximation for a pulsed plane wave in acoustic scattering problems. Saha RK; Sharma SK Phys Med Biol; 2005 Jun; 50(12):2823-36. PubMed ID: 15930605 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water. Bapat PS; Pandit AB Ultrason Sonochem; 2008 Jan; 15(1):65-77. PubMed ID: 17368069 [TBL] [Abstract][Full Text] [Related]
12. The role of cavitation microjets in the therapeutic applications of ultrasound. Brujan EA Ultrasound Med Biol; 2004 Mar; 30(3):381-7. PubMed ID: 15063520 [TBL] [Abstract][Full Text] [Related]
13. Vibro-magnetometry: theoretical aspects and simulations. Carneiro AO; Baffa O; Silva GT; Fatemi M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1065-73. PubMed ID: 19473925 [TBL] [Abstract][Full Text] [Related]
14. Ultrasound, cavitation bubbles and their interaction with cells. Wu J; Nyborg WL Adv Drug Deliv Rev; 2008 Jun; 60(10):1103-16. PubMed ID: 18468716 [TBL] [Abstract][Full Text] [Related]
15. Characterization of ultrasound-induced fracture of polymer-shelled ultrasonic contrast agents by correlation analysis. Pecorari C; Grishenkov D J Acoust Soc Am; 2007 Oct; 122(4):2425-30. PubMed ID: 17902876 [TBL] [Abstract][Full Text] [Related]
16. A novel study of mechanical heart valve cavitation in a pressurized pulsatile duplicator. Wu C; Retta SM; Robinson RA; Herman BA; Grossman LW ASAIO J; 2009; 55(5):445-51. PubMed ID: 19701083 [TBL] [Abstract][Full Text] [Related]