These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 19648001)
1. Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA Bioresour Technol; 2009 Dec; 100(24):6250-7. PubMed ID: 19648001 [TBL] [Abstract][Full Text] [Related]
2. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112 [TBL] [Abstract][Full Text] [Related]
3. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Arriagada C; Sampedro I; Garcia-Romera I; Ocampo J Sci Total Environ; 2009 Aug; 407(17):4799-806. PubMed ID: 19515400 [TBL] [Abstract][Full Text] [Related]
4. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Arriagada CA; Herrera MA; Ocampo JA J Environ Manage; 2007 Jul; 84(1):93-9. PubMed ID: 16837125 [TBL] [Abstract][Full Text] [Related]
5. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Li Y; Peng J; Shi P; Zhao B Chemosphere; 2009 May; 75(7):894-9. PubMed ID: 19232430 [TBL] [Abstract][Full Text] [Related]
6. Response of Eucalyptus tereticornis to inoculation with indigenous AM fungi in a semiarid alfisol achieved with different concentrations of available soil P. Sharma MP; Adholeya A Microbiol Res; 2000 Mar; 154(4):349-54. PubMed ID: 10772157 [TBL] [Abstract][Full Text] [Related]
7. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Sheng M; Tang M; Chen H; Yang B; Zhang F; Huang Y Can J Microbiol; 2009 Jul; 55(7):879-86. PubMed ID: 19767861 [TBL] [Abstract][Full Text] [Related]
8. Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. De Jaeger N; Declerck S; de la Providencia IE FEMS Microbiol Ecol; 2010 Aug; 73(2):312-22. PubMed ID: 20533946 [TBL] [Abstract][Full Text] [Related]
9. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Rufyikiri G; Huysmans L; Wannijn J; Van Hees M; Leyval C; Jakobsen I Environ Pollut; 2004 Aug; 130(3):427-36. PubMed ID: 15182973 [TBL] [Abstract][Full Text] [Related]
10. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Xu P; Christie P; Liu Y; Zhang J; Li X Environ Pollut; 2008 Nov; 156(1):215-20. PubMed ID: 18280625 [TBL] [Abstract][Full Text] [Related]
11. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359 [TBL] [Abstract][Full Text] [Related]
12. The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. Leung HM; Wu FY; Cheung KC; Ye ZH; Wong MH Int J Phytoremediation; 2010; 12(4):384-403. PubMed ID: 20734915 [TBL] [Abstract][Full Text] [Related]
13. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Punamiya P; Datta R; Sarkar D; Barber S; Patel M; Das P J Hazard Mater; 2010 May; 177(1-3):465-74. PubMed ID: 20061082 [TBL] [Abstract][Full Text] [Related]
14. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Jourand P; Ducousso M; Reid R; Majorel C; Richert C; Riss J; Lebrun M Tree Physiol; 2010 Oct; 30(10):1311-9. PubMed ID: 20688880 [TBL] [Abstract][Full Text] [Related]
15. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi. De Jaeger N; de la Providencia IE; de Boulois HD; Declerck S FEMS Microbiol Ecol; 2011 Sep; 77(3):558-67. PubMed ID: 21609342 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Stevens KJ; Spender SW; Peterson RL Mycorrhiza; 2002 Dec; 12(6):277-83. PubMed ID: 12466914 [TBL] [Abstract][Full Text] [Related]
17. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L.). Chen XH; Zhao B Chemosphere; 2007 Jul; 68(8):1548-55. PubMed ID: 17475308 [TBL] [Abstract][Full Text] [Related]
19. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Xia YS; Chen BD; Christie P; Smith FA; Wang YS; Li XL J Environ Sci (China); 2007; 19(10):1245-51. PubMed ID: 18062425 [TBL] [Abstract][Full Text] [Related]
20. Impact of DOM from composted "alperujo" on soil structure, AM fungi, microbial activity and growth of Medicago sativa. Kohler J; Tortosa G; Cegarra J; Caravaca F; Roldán A Waste Manag; 2008; 28(8):1423-31. PubMed ID: 17624755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]