These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19648027)

  • 21. Zundel-type H-bonding in biomolecular ions.
    Hernandez O; Pulay P; Maître P; Paizs B
    J Am Soc Mass Spectrom; 2014 Sep; 25(9):1511-4. PubMed ID: 25001386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IR action spectroscopy shows competitive oxazolone and diketopiperazine formation in peptides depends on peptide length and identity of terminal residue in the departing fragment.
    Morrison LJ; Chamot-Rooke J; Wysocki VH
    Analyst; 2014 May; 139(9):2137-43. PubMed ID: 24618890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage.
    Paizs B; Suhai S
    J Am Soc Mass Spectrom; 2004 Jan; 15(1):103-13. PubMed ID: 14698560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonant infrared multiphoton dissociation spectroscopy of gas-phase protonated peptides. Experiments and Car-Parrinello dynamics at 300 K.
    Grégoire G; Gaigeot MP; Marinica DC; Lemaire J; Schermann JP; Desfrançois C
    Phys Chem Chem Phys; 2007 Jun; 9(24):3082-97. PubMed ID: 17612732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge-separation reactions of doubly-protonated peptides: effect of peptide chain length.
    Harrison AG
    J Am Soc Mass Spectrom; 2009 Oct; 20(10):1890-5. PubMed ID: 19651525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordination of trivalent metal cations to peptides: results from IRMPD spectroscopy and theory.
    Prell JS; Flick TG; Oomens J; Berden G; Williams ER
    J Phys Chem A; 2010 Jan; 114(2):854-60. PubMed ID: 19950916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton affinities of the N- and C-terminal segments arising upon the dissociation of the amide bond in protonated peptides.
    Nold MJ; Cerda BA; Wesdemiotis C
    J Am Soc Mass Spectrom; 1999 Jan; 10(1):1-8. PubMed ID: 9888180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infrared Multiple-Photon Dissociation Action Spectroscopy of the b
    Poutsma JC; Martens J; Oomens J; Maitre P; Steinmetz V; Bernier M; Jia M; Wysocki V
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1482-1488. PubMed ID: 28374317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of electron-capture dissociation fragments from charge-tagged peptides probed by tunable infrared multiple photon dissociation.
    Frison G; van der Rest G; Turecek F; Besson T; Lemaire J; Maître P; Chamot-Rooke J
    J Am Chem Soc; 2008 Nov; 130(45):14916-7. PubMed ID: 18937474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy.
    Wu R; McMahon TB
    Chemphyschem; 2008 Dec; 9(18):2826-35. PubMed ID: 18846594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton Mobility in b₂ Ion Formation and Fragmentation Reactions of Histidine-Containing Peptides.
    Nelson CR; Abutokaikah MT; Harrison AG; Bythell BJ
    J Am Soc Mass Spectrom; 2016 Mar; 27(3):487-97. PubMed ID: 26602904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy.
    Kempkes LJM; Martens J; Berden G; Oomens J
    J Mass Spectrom; 2018 Dec; 53(12):1207-1213. PubMed ID: 30281881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IRMPD spectra of Gly.NH4 + and proton-bound betaine dimer: evidence for the smallest gas phase zwitterionic structures.
    Wu R; McMahon TB
    J Mass Spectrom; 2008 Dec; 43(12):1641-8. PubMed ID: 18613000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas-phase structure of amyloid-β (12-28) peptide investigated by infrared spectroscopy, electron capture dissociation and ion mobility mass spectrometry.
    Le TN; Poully JC; Lecomte F; Nieuwjaer N; Manil B; Desfrançois C; Chirot F; Lemoine J; Dugourd P; van der Rest G; Grégoire G
    J Am Soc Mass Spectrom; 2013 Dec; 24(12):1937-49. PubMed ID: 24043520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IRMPD spectroscopy of protonated S-nitrosocaptopril, a biologically active, synthetic amino acid.
    Coletti C; Re N; Scuderi D; Maître P; Chiavarino B; Fornarini S; Lanucara F; Sinha RK; Crestoni ME
    Phys Chem Chem Phys; 2010 Nov; 12(41):13455-67. PubMed ID: 20852770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton mobility in protonated peptides: a joint molecular orbital and RRKM study.
    Csonka IP; Paizs B; Lendvay G; Suhai S
    Rapid Commun Mass Spectrom; 2000; 14(6):417-31. PubMed ID: 10717650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the Pb²⁺-deprotonated dGMP complex in the gas phase: a combined MS-MS/IRMPD spectroscopy/ion mobility study.
    Salpin JY; MacAleese L; Chirot F; Dugourd P
    Phys Chem Chem Phys; 2014 Jul; 16(27):14127-38. PubMed ID: 24901754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.
    Rummel JL; Steill JD; Oomens J; Contreras CS; Pearson WL; Szczepanski J; Powell DH; Eyler JR
    Anal Chem; 2011 Jun; 83(11):4045-52. PubMed ID: 21491962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence glutamic acid in protonated b
    Morrison L; Somogyi A; Wysocki VH
    Int J Mass Spectrom; 2012 Jul; 325-327():139-149. PubMed ID: 23667319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of sodiated octa-glycine: IRMPD spectroscopy and molecular modeling.
    Semrouni D; Balaj OP; Calvo F; Correia CF; Clavaguéra C; Ohanessian G
    J Am Soc Mass Spectrom; 2010 May; 21(5):728-38. PubMed ID: 20189824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.