BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19648481)

  • 1. Influence of central command on cerebral blood flow at the onset of exercise in women.
    Sato K; Moriyama M; Sadamoto T
    Exp Physiol; 2009 Nov; 94(11):1139-46. PubMed ID: 19648481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central command and the increase in middle cerebral artery blood flow velocity during static arm exercise in women.
    Sato K; Sadamoto T; Ueda-Sasahara C; Shibuya K; Shimizu-Okuyama S; Osada T; Kamo M; Saito M; Kagaya A
    Exp Physiol; 2009 Nov; 94(11):1132-8. PubMed ID: 19648482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of central command and muscle afferent activation on anterior cerebral artery blood velocity responses to calf exercise in humans.
    Vianna LC; Araújo CG; Fisher JP
    J Appl Physiol (1985); 2009 Oct; 107(4):1113-20. PubMed ID: 19679744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise.
    Ogoh S; Brothers RM; Barnes Q; Eubank WL; Hawkins MN; Purkayastha S; O-Yurvati A; Raven PB
    J Physiol; 2005 Dec; 569(Pt 2):697-704. PubMed ID: 16210355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of cerebral vascular tone during exercise; evaluation by critical closing pressure in humans.
    Ogoh S; Brothers RM; Jeschke M; Secher NH; Raven PB
    Exp Physiol; 2010 Jun; 95(6):678-85. PubMed ID: 20228122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central command and cerebral blood flow during exercise.
    Secher NH
    Exp Physiol; 2009 Nov; 94(11):1101-2. PubMed ID: 19837776
    [No Abstract]   [Full Text] [Related]  

  • 7. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans.
    Sato K; Ogoh S; Hirasawa A; Oue A; Sadamoto T
    J Physiol; 2011 Jun; 589(Pt 11):2847-56. PubMed ID: 21486813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans.
    Ogoh S; Dalsgaard MK; Secher NH; Raven PB
    Acta Physiol (Oxf); 2007 Sep; 191(1):3-14. PubMed ID: 17506866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip.
    Rasmussen P; Plomgaard P; Krogh-Madsen R; Kim YS; van Lieshout JJ; Secher NH; Quistorff B
    J Appl Physiol (1985); 2006 Nov; 101(5):1406-11. PubMed ID: 16794025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between the blood lactate-to-pyruvate ratio and MCA Vmean at the onset of exercise in humans.
    Rasmussen P; Madsen CA; Nielsen HB; Zaar M; Gjedde A; Secher NH; Quistorff B
    J Appl Physiol (1985); 2009 Dec; 107(6):1799-805. PubMed ID: 19779155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Varying the heart rate response to dynamic exercise in pacemaker-dependent subjects: effects on cardiac output and cerebral blood velocity.
    Bogert LW; Erol-Yilmaz A; Tukkie R; Van Lieshout JJ
    Clin Sci (Lond); 2005 Dec; 109(6):493-501. PubMed ID: 16038616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential responses to sympathetic stimulation in the cerebral and brachial circulations during rhythmic handgrip exercise in humans.
    Hartwich D; Fowler KL; Wynn LJ; Fisher JP
    Exp Physiol; 2010 Nov; 95(11):1089-97. PubMed ID: 20851860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral autoregulation dynamics in endurance-trained individuals.
    Lind-Holst M; Cotter JD; Helge JW; Boushel R; Augustesen H; Van Lieshout JJ; Pott FC
    J Appl Physiol (1985); 2011 May; 110(5):1327-33. PubMed ID: 21372098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans.
    Ogoh S; Fadel PJ; Zhang R; Selmer C; Jans Ø; Secher NH; Raven PB
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1526-31. PubMed ID: 15591094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans.
    Ide K; Boushel R; Sørensen HM; Fernandes A; Cai Y; Pott F; Secher NH
    Acta Physiol Scand; 2000 Sep; 170(1):33-8. PubMed ID: 10971220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Shibasaki M
    J Appl Physiol (1985); 2014 Jul; 117(1):46-52. PubMed ID: 24790021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular responses to voluntary and nonvoluntary static exercise in humans.
    Friedman DB; Peel C; Mitchell JH
    J Appl Physiol (1985); 1992 Nov; 73(5):1982-5. PubMed ID: 1474075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise.
    Hellström G; Fischer-Colbrie W; Wahlgren NG; Jogestrand T
    J Appl Physiol (1985); 1996 Jul; 81(1):413-8. PubMed ID: 8828693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.
    Kjeld T; Pott FC; Secher NH
    J Appl Physiol (1985); 2009 Apr; 106(4):1243-8. PubMed ID: 19179653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass.
    Ide K; Pott F; Van Lieshout JJ; Secher NH
    Acta Physiol Scand; 1998 Jan; 162(1):13-20. PubMed ID: 9492897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.