BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 19648914)

  • 1. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury.
    Alto LT; Havton LA; Conner JM; Hollis ER; Blesch A; Tuszynski MH
    Nat Neurosci; 2009 Sep; 12(9):1106-13. PubMed ID: 19648914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.
    Hou S; Nicholson L; van Niekerk E; Motsch M; Blesch A
    J Neurosci; 2012 Sep; 32(38):13206-20. PubMed ID: 22993437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconnecting injured nerves.
    Cho M
    Nat Neurosci; 2009 Sep; 12(9):1085. PubMed ID: 19710648
    [No Abstract]   [Full Text] [Related]  

  • 5. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord.
    Taylor L; Jones L; Tuszynski MH; Blesch A
    J Neurosci; 2006 Sep; 26(38):9713-21. PubMed ID: 16988042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord.
    Zhou L; Baumgartner BJ; Hill-Felberg SJ; McGowen LR; Shine HD
    J Neurosci; 2003 Feb; 23(4):1424-31. PubMed ID: 12598631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord.
    Bonner JF; Connors TM; Silverman WF; Kowalski DP; Lemay MA; Fischer I
    J Neurosci; 2011 Mar; 31(12):4675-86. PubMed ID: 21430166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor axonal regeneration after partial and complete spinal cord transection.
    Lu P; Blesch A; Graham L; Wang Y; Samara R; Banos K; Haringer V; Havton L; Weishaupt N; Bennett D; Fouad K; Tuszynski MH
    J Neurosci; 2012 Jun; 32(24):8208-18. PubMed ID: 22699902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTEN deletion enhances the regenerative ability of adult corticospinal neurons.
    Liu K; Lu Y; Lee JK; Samara R; Willenberg R; Sears-Kraxberger I; Tedeschi A; Park KK; Jin D; Cai B; Xu B; Connolly L; Steward O; Zheng B; He Z
    Nat Neurosci; 2010 Sep; 13(9):1075-81. PubMed ID: 20694004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels.
    Bamber NI; Li H; Lu X; Oudega M; Aebischer P; Xu XM
    Eur J Neurosci; 2001 Jan; 13(2):257-68. PubMed ID: 11168530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal root ganglion axons facilitate and guide cortical neural outgrowth: In vitro modeling of spinal cord injury axonal regeneration.
    Xu ZX; Albayar A; Dollé JP; Hansel G; Bianchini J; Sullivan PZ; Cullen DK; Smith DH; Ozturk AK
    Restor Neurol Neurosci; 2020; 38(1):1-9. PubMed ID: 31594262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury.
    Kadoya K; Tsukada S; Lu P; Coppola G; Geschwind D; Filbin MT; Blesch A; Tuszynski MH
    Neuron; 2009 Oct; 64(2):165-72. PubMed ID: 19874785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats.
    Baker KA; Nakashima S; Hagg T
    Exp Neurol; 2007 May; 205(1):82-91. PubMed ID: 17316612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury.
    Lu P; Yang H; Jones LL; Filbin MT; Tuszynski MH
    J Neurosci; 2004 Jul; 24(28):6402-9. PubMed ID: 15254096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.
    Goganau I; Sandner B; Weidner N; Fouad K; Blesch A
    Exp Neurol; 2018 Feb; 300():247-258. PubMed ID: 29183676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord.
    Bradbury EJ; Khemani S; Von R; King ; Priestley JV; McMahon SB
    Eur J Neurosci; 1999 Nov; 11(11):3873-83. PubMed ID: 10583476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.