These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19649053)

  • 1. Monitoring error compensation in general optical coatings.
    Willey RR
    Appl Opt; 2009 Aug; 48(22):4475-82. PubMed ID: 19649053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning point monitoring of narrow bandpass filters: the enormous strength of the error self-compensation effect.
    Tikhonravov A; Lagutin I; Yagola A
    Appl Opt; 2022 Oct; 61(28):8281-8285. PubMed ID: 36256140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings.
    Willey RR
    Appl Opt; 2014 Feb; 53(4):A27-34. PubMed ID: 24514225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global sensitivity analysis of bandpass and antireflection coating manufacturing by numerical space filling designs.
    Vasseur O; Cathelinaud M; Claeys-Bruno M; Sergent M
    Appl Opt; 2011 Mar; 50(9):C117-23. PubMed ID: 21460925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6-18 microm).
    Hawkins GJ; Hunneman R; Sherwood R; Barrett BM
    Appl Opt; 2000 Oct; 39(28):5221-30. PubMed ID: 18354519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths.
    Lee CC; Wu K; Kuo CC; Chen SH
    Opt Express; 2005 Jun; 13(13):4854-61. PubMed ID: 19498471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition error compensation for optical multilayer coatings. I. Theoretical description.
    Sullivan BT; Dobrowolski JA
    Appl Opt; 1992 Jul; 31(19):3821-35. PubMed ID: 20725359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflection coefficient monitoring for optical interference coating depositions.
    Lee CC; Wu K; Ho MY
    Opt Lett; 2013 Apr; 38(8):1325-7. PubMed ID: 23595473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for in-situ thin film filter monitoring with a broadband spectrometer.
    Zideluns J; Lemarchand F; Arhilger D; Hagedorn H; Lumeau J
    Opt Express; 2023 Mar; 31(6):9339-9349. PubMed ID: 37157506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring thin films of the fence post design and its advantages for narrow bandpass filters.
    Willey RR
    Appl Opt; 2008 May; 47(13):C147-50. PubMed ID: 18449237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance thin-film optical filters with stress compensation.
    Begou T; Lemarchand F; Lemarquis F; Moreau A; Lumeau J
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C113-C121. PubMed ID: 31873706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the error self-compensation effect associated with broadband optical monitoring.
    Tikhonravov AV; Trubetskov MK; Amotchkina TV
    Appl Opt; 2011 Mar; 50(9):C111-6. PubMed ID: 21460924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of errors in the monitoring of narrow bandpass filters.
    Willey RR
    Appl Opt; 2002 Jun; 41(16):3193-5. PubMed ID: 12064401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavefront control of SiO2-based ultraviolet narrow-bandpass filters prepared by plasma ion-assisted deposition.
    Wang J; Maier RL; Schreiber H
    Appl Opt; 2007 Jan; 46(2):175-9. PubMed ID: 17268560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for calculating optical coating stabilities.
    Regalado LE; Garcia-Llamas R
    Appl Opt; 1993 Oct; 32(28):5677-82. PubMed ID: 20856386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error self-compensation mechanism in the optical coating production with direct broad band monitoring.
    Tikhonravov AV; Kochikov IV; Yagola AG
    Opt Express; 2017 Oct; 25(22):27225-27233. PubMed ID: 29092200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting achievable design performance of broadband antireflection coatings.
    Willey RR
    Appl Opt; 1993 Oct; 32(28):5447-51. PubMed ID: 20856354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss/gain-induced ultrathin antireflection coatings.
    Luo J; Li S; Hou B; Lai Y
    Sci Rep; 2016 Jun; 6():28681. PubMed ID: 27349750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design method on diffractive optical elements with antireflection coatings.
    Mao S; Cui Q; Piao M
    Opt Express; 2017 May; 25(10):11673-11678. PubMed ID: 28788728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ sensitive optical monitoring with proper error compensation.
    Lee CC; Wu K
    Opt Lett; 2007 Aug; 32(15):2118-20. PubMed ID: 17671555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.