These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19649072)

  • 21. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes.
    Quero G; Zito G; Managò S; Galeotti F; Pisco M; De Luca AC; Cusano A
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes.
    Cao J; Zhao D; Qin Y
    Talanta; 2019 Mar; 194():895-902. PubMed ID: 30609621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes.
    Guo J; Luo Y; Yang C; Kong L
    Opt Lett; 2018 Nov; 43(21):5443-5446. PubMed ID: 30383028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A high sensitive fiber SERS probe based on silver nanorod arrays.
    Chu HV; Liu Y; Huang Y; Zhao Y
    Opt Express; 2007 Sep; 15(19):12230-9. PubMed ID: 19547590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing.
    Bai S; Serien D; Ma Y; Obata K; Sugioka K
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42328-42338. PubMed ID: 32799517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extremely Sensitive SERS Sensors Based on a Femtosecond Laser-Fabricated Superhydrophobic/-philic Microporous Platform.
    Yu J; Wu J; Yang H; Li P; Liu J; Wang M; Pang J; Li C; Yang C; Xu K
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43877-43885. PubMed ID: 36101984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing.
    Li L; Deng S; Wang H; Zhang R; Zhu K; Lu Y; Wang Z; Zong S; Wang Z; Cui Y
    Nanotechnology; 2019 Jun; 30(25):255503. PubMed ID: 30840944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remote SERS detection at a 10-m scale using silica fiber SERS probes coupled with a convolutional neural network.
    Huang J; Zhou F; Cai C; Chu R; Zhang Z; Liu Y
    Opt Lett; 2023 Feb; 48(4):896-899. PubMed ID: 36790969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate.
    Zhang J; Qu S; Zhang L; Tang A; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):625-30. PubMed ID: 21531614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper.
    Cao J; Zhao D; Mao Q
    Analyst; 2017 Feb; 142(4):596-602. PubMed ID: 28128376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis.
    Stokes DL; Chi Z; Vo-Dinh T
    Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection.
    Zhang S; Tian X; Yin J; Liu Y; Dong Z; Sun JL; Ma W
    Sci Rep; 2016 Apr; 6():24503. PubMed ID: 27094084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation.
    Long Y; Li H; Du Z; Geng M; Liu Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering.
    Jiang L; Ying D; Li X; Lu Y
    Opt Lett; 2012 Sep; 37(17):3648-50. PubMed ID: 22940978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe.
    Milenko K; Fuglerud SS; Kjeldby SB; Ellingsen R; Aksnes A; Hjelme DR
    Opt Lett; 2018 Dec; 43(24):6029-6032. PubMed ID: 30547996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection.
    Yang H; Gun X; Pang G; Zheng Z; Li C; Yang C; Wang M; Xu K
    Opt Express; 2021 May; 29(11):16904-16913. PubMed ID: 34154243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.