These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19649130)

  • 21. High-density optical recording using a solid immersion lens.
    Ichimura I; Hayashi S; Kino GS
    Appl Opt; 1997 Jul; 36(19):4339-48. PubMed ID: 18259219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhigh numerical aperture (NA > 1.5) micro gradient-index lens based on a dual-material approach.
    Huang Y; Ho ST
    Opt Lett; 2005 Jun; 30(11):1291-3. PubMed ID: 15981510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planar binary-phase lens for super-oscillatory optical hollow needles.
    Chen G; Wu Z; Yu A; Zhang K; Wu J; Dai L; Wen Z; He Y; Zhang Z; Jiang S; Wang C; Luo X
    Sci Rep; 2017 Jul; 7(1):4697. PubMed ID: 28680139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Readout signals calculated for near-field optical pickups with land and groove recording.
    Saito K; Kishima K; Ichimura I
    Appl Opt; 2000 Aug; 39(23):4153-9. PubMed ID: 18349997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of high-performance supersphere solid immersion lenses.
    Zhang Y
    Appl Opt; 2006 Jul; 45(19):4540-6. PubMed ID: 16799662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Fabrication of Microscale, Thin-Film Silicon Solid Immersion Lenses for Mid-Infrared Application.
    Lee GJ; Kim HM; Song YM
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32120857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calculations of second harmonic generation with radially polarized excitations by elliptical mirror focusing.
    Wang W; Wu B; Liu P; Liu J; Tan J
    J Microsc; 2019 Jan; 273(1):36-45. PubMed ID: 30252126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Annular pupils, radial polarization, and superresolution.
    Sheppard CJ; Choudhury A
    Appl Opt; 2004 Aug; 43(22):4322-7. PubMed ID: 15298403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated optics microfluidic device for detecting single DNA molecules.
    Krogmeier JR; Schaefer I; Seward G; Yantz GR; Larson JW
    Lab Chip; 2007 Dec; 7(12):1767-74. PubMed ID: 18030399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.
    Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG
    Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High numerical aperture hybrid optics for two-photon polymerization.
    Burmeister F; Zeitner UD; Nolte S; Tünnermann A
    Opt Express; 2012 Mar; 20(7):7994-8005. PubMed ID: 22453471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of sub wavelength super-long dark channel using high NA lens axicon.
    Lalithambigai K; Suresh P; Ravi V; Prabakaran K; Jaroszewicz Z; Rajesh KB; Anbarasan PM; Pillai TV
    Opt Lett; 2012 Mar; 37(6):999-1001. PubMed ID: 22446203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High numerical aperture microwave metalens.
    Liu YQ; Sun J; Che Y; Qi K; Li L; Yin H
    Opt Lett; 2020 Nov; 45(22):6262-6265. PubMed ID: 33186965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens.
    Serov A; Rao R; Gösch M; Anhut T; Martin D; Brunner R; Rigler R; Lasser T
    Biosens Bioelectron; 2004 Oct; 20(3):431-5. PubMed ID: 15494221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.
    Laskar JM; Shravan Kumar P; Herminghaus S; Daniels KE; Schröter M
    Appl Opt; 2016 Apr; 55(12):3165-9. PubMed ID: 27140083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes.
    Eppig T; Spira C; Seitz B; Szentmáry N; Langenbucher A
    Z Med Phys; 2016 Jun; 26(2):159-67. PubMed ID: 27017516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrahigh Numerical Aperture Metalens at Visible Wavelengths.
    Liang H; Lin Q; Xie X; Sun Q; Wang Y; Zhou L; Liu L; Yu X; Zhou J; Krauss TF; Li J
    Nano Lett; 2018 Jul; 18(7):4460-4466. PubMed ID: 29940122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Metalens with a Near-Unity Numerical Aperture.
    Paniagua-Domínguez R; Yu YF; Khaidarov E; Choi S; Leong V; Bakker RM; Liang X; Fu YH; Valuckas V; Krivitsky LA; Kuznetsov AI
    Nano Lett; 2018 Mar; 18(3):2124-2132. PubMed ID: 29485885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses.
    Mason DR; Jouravlev MV; Kim KS
    Opt Lett; 2010 Jun; 35(12):2007-9. PubMed ID: 20548368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient optical elements: application to near-field microscopy.
    Simanovskii D; Palanker D; Cohn K; Smith T
    J Microsc; 2003 Jun; 210(Pt 3):307-10. PubMed ID: 12787104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.