BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19649324)

  • 1. Automatic multiple-zone rigid-body refinement with a large convergence radius.
    Afonine PV; Grosse-Kunstleve RW; Urzhumtsev A; Adams PD
    J Appl Crystallogr; 2009 Aug; 42(Pt 4):607-615. PubMed ID: 19649324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-matrix refinement of the protein crambin at 0.83 A and 130 K.
    Stec B; Zhou R; Teeter MM
    Acta Crystallogr D Biol Crystallogr; 1995 Sep; 51(Pt 5):663-81. PubMed ID: 15299796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-space refinement in PHENIX for cryo-EM and crystallography.
    Afonine PV; Poon BK; Read RJ; Sobolev OV; Terwilliger TC; Urzhumtsev A; Adams PD
    Acta Crystallogr D Struct Biol; 2018 Jun; 74(Pt 6):531-544. PubMed ID: 29872004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards automated crystallographic structure refinement with phenix.refine.
    Afonine PV; Grosse-Kunstleve RW; Echols N; Headd JJ; Moriarty NW; Mustyakimov M; Terwilliger TC; Urzhumtsev A; Zwart PH; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2012 Apr; 68(Pt 4):352-67. PubMed ID: 22505256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
    Janowski PA; Moriarty NW; Kelley BP; Case DA; York DM; Adams PD; Warren GL
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1062-72. PubMed ID: 27599738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some different strategies of least-squares refinement of a molecule.
    Harris GW; Moss DS
    Acta Crystallogr A; 1992 Jan; 48 ( Pt 1)():42-5. PubMed ID: 1550664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of the riding hydrogen model in CCTBX to support the next generation of X-ray and neutron joint refinement in Phenix.
    Liebschner D; Afonine PV; Urzhumtsev AG; Adams PD
    Methods Enzymol; 2020; 634():177-199. PubMed ID: 32093832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of TLS parameters to model anisotropic displacements in macromolecular refinement.
    Winn MD; Isupov MN; Murshudov GN
    Acta Crystallogr D Biol Crystallogr; 2001 Jan; 57(Pt 1):122-33. PubMed ID: 11134934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REFMAC5 for the refinement of macromolecular crystal structures.
    Murshudov GN; Skubák P; Lebedev AA; Pannu NS; Steiner RA; Nicholls RA; Winn MD; Long F; Vagin AA
    Acta Crystallogr D Biol Crystallogr; 2011 Apr; 67(Pt 4):355-67. PubMed ID: 21460454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of disorder in protein structures by X-ray restrained molecular dynamics.
    Kuriyan J; Osapay K; Burley SK; Brünger AT; Hendrickson WA; Karplus M
    Proteins; 1991; 10(4):340-58. PubMed ID: 1946343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspherical atom refinements on X-ray data of diverse structures including disordered and covalent organic framework systems: a time-accuracy trade-off.
    Jha KK; Kleemiss F; Chodkiewicz ML; Dominiak PM
    J Appl Crystallogr; 2023 Feb; 56(Pt 1):116-127. PubMed ID: 36777135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and precision in protein crystal structure analysis: two independent refinements of the structure of poplar plastocyanin at 173 K.
    Fields BA; Bartsch HH; Bartunik HD; Cordes F; Guss JM; Freeman HC
    Acta Crystallogr D Biol Crystallogr; 1994 Sep; 50(Pt 5):709-30. PubMed ID: 15299368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
    McCoy AJ; Oeffner RD; Millán C; Sammito M; Usón I; Read RJ
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):279-289. PubMed ID: 29652255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform
    Mikhailovskii O; Xue Y; Skrynnikov NR
    IUCrJ; 2022 Jan; 9(Pt 1):114-133. PubMed ID: 35059216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Likelihood-based refinement. I. Irremovable model errors.
    Lunin VY; Afonine PV; Urzhumtsev AG
    Acta Crystallogr A; 2002 May; 58(Pt 3):270-82. PubMed ID: 11961289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAIREF: paired refinement also for Phenix users.
    Malý M; Diederichs K; Dohnálek J; Kolenko P
    Acta Crystallogr F Struct Biol Commun; 2021 Jul; 77(Pt 7):226-229. PubMed ID: 34196613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution.
    Headd JJ; Echols N; Afonine PV; Grosse-Kunstleve RW; Chen VB; Moriarty NW; Richardson DC; Richardson JS; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2012 Apr; 68(Pt 4):381-90. PubMed ID: 22505258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.