These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19649324)

  • 41. Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of gammaB- and betaB2-crystallin.
    Tickle IJ; Laskowski RA; Moss DS
    Acta Crystallogr D Biol Crystallogr; 1998 Mar; 54(Pt 2):243-52. PubMed ID: 9761889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Refinement of macromolecular structures by the maximum-likelihood method.
    Murshudov GN; Vagin AA; Dodson EJ
    Acta Crystallogr D Biol Crystallogr; 1997 May; 53(Pt 3):240-55. PubMed ID: 15299926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular dynamics in refinement against fiber diffraction data.
    Wang H; Stubbs G
    Acta Crystallogr A; 1993 May; 49(3):504-13. PubMed ID: 8129880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion.
    Harata K; Abe Y; Muraki M
    Proteins; 1998 Feb; 30(3):232-43. PubMed ID: 9517539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rigid protein motion as a model for crystallographic temperature factors.
    Kuriyan J; Weis WI
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2773-7. PubMed ID: 2011586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved joint X-ray and neutron refinement procedure in Phenix.
    Liebschner D; Afonine PV; Poon BK; Moriarty NW; Adams PD
    Acta Crystallogr D Struct Biol; 2023 Dec; 79(Pt 12):1079-1093. PubMed ID: 37942718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetics of interactions in the solid state of 2-hydroxy-8-
    Woinska M; Wanat M; Taciak P; Pawinski T; Minor W; Wozniak K
    IUCrJ; 2019 Sep; 6(Pt 5):868-883. PubMed ID: 31576220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Symmetrical Parameterization of Rigid Body Transformations for Biomolecular Structures.
    Kim JS; Chirikjian GS
    J Comput Biol; 2018 Jan; 25(1):72-88. PubMed ID: 29172668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns.
    Tsuda K; Tanaka M
    Acta Crystallogr A; 1999 Sep; 55(Pt 5):939-954. PubMed ID: 10927304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient mesh refinement for the Poisson-Boltzmann equation with boundary elements.
    Ramm V; Chaudhry JH; Cooper CD
    J Comput Chem; 2021 Mar; ():. PubMed ID: 33751643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure.
    Arnold E; Rossmann MG
    Acta Crystallogr A; 1988 May; 44 ( Pt 3)():270-82. PubMed ID: 2856083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Framework for the development and evaluation of complex interventions: gap analysis, workshop and consultation-informed update.
    Skivington K; Matthews L; Simpson SA; Craig P; Baird J; Blazeby JM; Boyd KA; Craig N; French DP; McIntosh E; Petticrew M; Rycroft-Malone J; White M; Moore L
    Health Technol Assess; 2021 Sep; 25(57):1-132. PubMed ID: 34590577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic Refinement Strategies for Manual Initialization of Object Trackers.
    Hao Zhu ; Porikli F
    IEEE Trans Image Process; 2017 Feb; 26(2):821-835. PubMed ID: 27913348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation.
    Afonine PV; Adams PD; Urzhumtsev A
    Acta Crystallogr D Struct Biol; 2018 Jul; 74(Pt 7):621-631. PubMed ID: 29968672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models.
    Delarue M; Dumas P
    Proc Natl Acad Sci U S A; 2004 May; 101(18):6957-62. PubMed ID: 15096585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iteratively reweighted least squares in crystal structure refinements.
    Merli M; Sciascia L
    Acta Crystallogr A; 2011 Sep; 67(Pt 5):456-68. PubMed ID: 21844650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Refinement: promoting the three Rs in practice.
    Lloyd MH; Foden BW; Wolfensohn SE
    Lab Anim; 2008 Jul; 42(3):284-93. PubMed ID: 18625583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient anisotropic refinement of macromolecular structures using FFT.
    Murshudov GN; Vagin AA; Lebedev A; Wilson KS; Dodson EJ
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):247-55. PubMed ID: 10089417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.