These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19649609)

  • 1. Qualitative and quantitative analysis of peptide microarray binding experiments using SVM-PEPARRAY.
    Chen G; Zuo Z; Zhu Q; Hong A; Zhou X; Gao X; Li T
    Methods Mol Biol; 2009; 570():403-11. PubMed ID: 19649609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PASE: a web-based platform for peptide/protein microarray experiments.
    Pamelard F; Even G; Apostol C; Preda C; Dhaenens C; Fafeur V; Desmet R; Melnyk O
    Methods Mol Biol; 2009; 570():413-30. PubMed ID: 19649610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying protein-protein interactions using peptide arrays.
    Katz C; Levy-Beladev L; Rotem-Bamberger S; Rito T; RĂ¼diger SG; Friedler A
    Chem Soc Rev; 2011 May; 40(5):2131-45. PubMed ID: 21243154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A designed peptide chip: protein fingerprinting technology with a dry peptide array and statistical data mining.
    Usui K; Tomizaki KY; Mihara H
    Methods Mol Biol; 2009; 570():273-84. PubMed ID: 19649599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Web-based design of peptide microarrays using microPepArray Pro.
    Li T; Zuo Z; Zhu Q; Hong A; Zhou X; Gao X
    Methods Mol Biol; 2009; 570():391-401. PubMed ID: 19649608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of peptide epitope microarray experiments and extraction of quality data.
    Nahtman T; Jernberg A; Mahdavifar S; Zerweck J; Schutkowski M; Maeurer M; Reilly M
    J Immunol Methods; 2007 Dec; 328(1-2):1-13. PubMed ID: 17765917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.
    Kato R; Kaga C; Kunimatsu M; Kobayashi T; Honda H
    J Biosci Bioeng; 2006 Jun; 101(6):485-95. PubMed ID: 16935250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using peptide array to identify binding motifs and interaction networks for modular domains.
    Li SS; Wu C
    Methods Mol Biol; 2009; 570():67-76. PubMed ID: 19649589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid identification of linear protein domain binding motifs using peptide SPOT arrays.
    Briant DJ; Murphy JM; Leung GC; Sicheri F
    Methods Mol Biol; 2009; 570():175-85. PubMed ID: 19649592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays.
    Rigter A; Priem J; Timmers-Parohi D; Langeveld JP; Bossers A
    Methods Mol Biol; 2009; 570():257-71. PubMed ID: 19649598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinase substrate interactions.
    Smith MG; Ptacek J; Snyder M
    Methods Mol Biol; 2011; 723():201-12. PubMed ID: 21370067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrapolating traditional DNA microarray statistics to tiling and protein microarray technologies.
    Royce TE; Rozowsky JS; Luscombe NM; Emanuelsson O; Yu H; Zhu X; Snyder M; Gerstein MB
    Methods Enzymol; 2006; 411():282-311. PubMed ID: 16939796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PATIKAmad: putting microarray data into pathway context.
    Babur O; Colak R; Demir E; Dogrusoz U
    Proteomics; 2008 Jun; 8(11):2196-8. PubMed ID: 18452226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling peptide-protein interactions.
    London N; Raveh B; Schueler-Furman O
    Methods Mol Biol; 2012; 857():375-98. PubMed ID: 22323231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-peptide interactions via a network-based motif sampler.
    Reiss DJ; Schwikowski B
    Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of peptides with a high affinity for ZnO using spot-synthesized peptide arrays and computational analysis.
    Okochi M; Ogawa M; Kaga C; Sugita T; Tomita Y; Kato R; Honda H
    Acta Biomater; 2010 Jun; 6(6):2301-6. PubMed ID: 20026000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CelluSpots: a reproducible means of making peptide arrays for the determination of SH2 domain binding specificity.
    Wu C; Li SS
    Methods Mol Biol; 2009; 570():197-202. PubMed ID: 19649594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.