These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19649667)

  • 1. Modeling effects of axial extension on arterial growth and remodeling.
    Valentín A; Humphrey JD
    Med Biol Eng Comput; 2009 Sep; 47(9):979-87. PubMed ID: 19649667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental role of axial stress in compensatory adaptations by arteries.
    Humphrey JD; Eberth JF; Dye WW; Gleason RL
    J Biomech; 2009 Jan; 42(1):1-8. PubMed ID: 19070860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a sustained extension on arterial growth and remodeling: a theoretical study.
    Gleason RL; Humphrey JD
    J Biomech; 2005 Jun; 38(6):1255-61. PubMed ID: 15863110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch.
    Gleason RL; Humphrey JD
    Math Med Biol; 2005 Dec; 22(4):347-69. PubMed ID: 16319121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constrained mixture model for arterial adaptations to a sustained step change in blood flow.
    Humphrey JD; Rajagopal KR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in transmural pressure and axial loading ex vivo affect arterial remodeling and material properties.
    Lawrence AR; Gooch KJ
    J Biomech Eng; 2009 Oct; 131(10):101009. PubMed ID: 19831479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion.
    Sommer G; Benedikt C; Niestrawska JA; Hohenberger G; Viertler C; Regitnig P; Cohnert TU; Holzapfel GA
    Acta Biomater; 2018 Jul; 75():235-252. PubMed ID: 29859367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of axial prestretch and residual stress in arteries.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Biomech Model Mechanobiol; 2009 Dec; 8(6):431-46. PubMed ID: 19123012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biochemomechanical model of collagen turnover in arterial adaptations to hemodynamic loading.
    Tilahun HG; Mullagura HN; Humphrey JD; Baek S
    Biomech Model Mechanobiol; 2023 Dec; 22(6):2063-2082. PubMed ID: 37505299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries.
    Gleason RL; Taber LA; Humphrey JD
    J Biomech Eng; 2004 Jun; 126(3):371-81. PubMed ID: 15341175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical events within the arterial wall: The dynamic context for elastin fatigue.
    Hodis S; Zamir M
    J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo.
    Lawrence AR; Gooch KJ
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H475-84. PubMed ID: 19465545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences.
    Ferruzzi J; Madziva D; Caulk AW; Tellides G; Humphrey JD
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1281-1295. PubMed ID: 29754316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for geometric and mechanical adaptation of arteries to sustained hypertension.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech Eng; 1998 Feb; 120(1):9-17. PubMed ID: 9675674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.