These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19649941)

  • 21. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer.
    Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F
    Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. More than a messenger: Alternative splicing as a therapeutic target.
    Black AJ; Gamarra JR; Giudice J
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194395. PubMed ID: 31271898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Modulation of Endogenous Alternative Splicing Using Splice-Switching Antisense Oligonucleotides.
    Park JE; Cartegni L
    Methods Mol Biol; 2017; 1648():39-52. PubMed ID: 28766288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligonucleotide therapeutics in cancer.
    Wan J; Bauman JA; Graziewicz MA; Sazani P; Kole R
    Cancer Treat Res; 2013; 158():213-33. PubMed ID: 24222360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA.
    Dotson PP; Frommeyer KN; Testa SM
    Arch Biochem Biophys; 2008 Oct; 478(1):81-4. PubMed ID: 18671935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies.
    Adachi H; Hengesbach M; Yu YT; Morais P
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34068948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development.
    Derakhshan SM; Khaniani MS
    Iran J Basic Med Sci; 2017 Jun; 20(6):700-707. PubMed ID: 28868125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides.
    Bergsma AJ; In 't Groen SL; Verheijen FW; van der Ploeg AT; Pijnappel WWMP
    Mol Ther Nucleic Acids; 2016 Sep; 5(9):e361. PubMed ID: 27623443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antisense technology: a selective tool for gene expression regulation and gene targeting.
    Sahu NK; Shilakari G; Nayak A; Kohli DV
    Curr Pharm Biotechnol; 2007 Oct; 8(5):291-304. PubMed ID: 17979727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense-mediated splice intervention to treat human disease: the odyssey continues.
    Pitout I; Flynn LL; Wilton SD; Fletcher S
    F1000Res; 2019; 8():. PubMed ID: 31164976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sugar boost: when ribose modifications improve oligonucleotide performance.
    Faria M; Ulrich H
    Curr Opin Mol Ther; 2008 Apr; 10(2):168-75. PubMed ID: 18386229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA Trans-Splicing Modulation via Antisense Molecule Interference.
    Liemberger B; Piñón Hofbauer J; Wally V; Arzt C; Hainzl S; Kocher T; Murauer EM; Bauer JW; Reichelt J; Koller U
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29518954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation.
    Raguraman P; Balachandran AA; Chen S; Diermeier SD; Veedu RN
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting Splicing in the Treatment of Human Disease.
    Suñé-Pou M; Prieto-Sánchez S; Boyero-Corral S; Moreno-Castro C; El Yousfi Y; Suñé-Negre JM; Hernández-Munain C; Suñé C
    Genes (Basel); 2017 Feb; 8(3):. PubMed ID: 28245575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing in vitro and in vivo activity of 2'-O-[2-(methylamino)-2-oxoethyl]- and 2'-O-methoxyethyl-modified antisense oligonucleotides.
    Prakash TP; Kawasaki AM; Wancewicz EV; Shen L; Monia BP; Ross BS; Bhat B; Manoharan M
    J Med Chem; 2008 May; 51(9):2766-76. PubMed ID: 18399648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecules modulating RNA splicing: a review of targets and future perspectives.
    Bouton L; Ecoutin A; Malard F; Campagne S
    RSC Med Chem; 2024 Apr; 15(4):1109-1126. PubMed ID: 38665842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting RNA splicing for disease therapy.
    Havens MA; Duelli DM; Hastings ML
    Wiley Interdiscip Rev RNA; 2013; 4(3):247-66. PubMed ID: 23512601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective regulation of mutant K-ras mRNA expression by photo-cross-linking antisense oligonucleotide.
    Higuchi M; Yamayoshi A; Kobori A; Murakami A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):443-4. PubMed ID: 18029777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antisense oligonucleotides as research tools.
    Taylor JK; Cooper SR; Dean NM
    Methods Mol Med; 2001; 61():99-106. PubMed ID: 22323254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid.
    Huang D; Fletcher S; Wilton SD; Palmer N; McLenachan S; Mackey DA; Chen FK
    Vision (Basel); 2017 Sep; 1(3):. PubMed ID: 31740647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.