These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19649941)

  • 41. Present and future of antisense therapy for splicing modulation in inherited metabolic disease.
    Pérez B; Rodríguez-Pascau L; Vilageliu L; Grinberg D; Ugarte M; Desviat LR
    J Inherit Metab Dis; 2010 Aug; 33(4):397-403. PubMed ID: 20577904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of antisense oligonucleotides containing 2'-O-psoralenylmethoxyalkyl adenosine for photodynamic regulation of point mutations in RNA.
    Higuchi M; Kobori A; Yamayoshi A; Murakami A
    Bioorg Med Chem; 2009 Jan; 17(2):475-83. PubMed ID: 19135379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides.
    White PJ; Anastasopoulos F; Pouton CW; Boyd BJ
    Expert Rev Mol Med; 2009 Mar; 11():e10. PubMed ID: 19302730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic Medicine: Development of DNA as a therapeutic drug for sequence-specific modification of genomic DNA.
    Gruenert DC
    Discov Med; 2003 Oct; 3(18):58-60. PubMed ID: 20704870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact, Characterization, and Rescue of Pre-mRNA Splicing Mutations in Lysosomal Storage Disorders.
    Dardis A; Buratti E
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29415500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled delivery of antisense oligonucleotides: a brief review of current strategies.
    Zhao X; Pan F; Holt CM; Lewis AL; Lu JR
    Expert Opin Drug Deliv; 2009 Jul; 6(7):673-86. PubMed ID: 19552611
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy.
    Heemskerk H; de Winter CL; van Ommen GJ; van Deutekom JC; Aartsma-Rus A
    Ann N Y Acad Sci; 2009 Sep; 1175():71-9. PubMed ID: 19796079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Splicing Modulation as a Promising Therapeutic Strategy for Lysosomal Storage Disorders: The Mucopolysaccharidoses Example.
    Santos JI; Gonçalves M; Matos L; Moreira L; Carvalho S; Prata MJ; Coutinho MF; Alves S
    Life (Basel); 2022 Apr; 12(5):. PubMed ID: 35629276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Viral Vector-Mediated Antisense Therapy for Genetic Diseases.
    Imbert M; Dias-Florencio G; Goyenvalle A
    Genes (Basel); 2017 Jan; 8(2):. PubMed ID: 28134780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of splice sites on the intron retention in histamine H3 receptors from rats and mice.
    Ding W; Lin L; Ren F; Zou H; Duan Z; Dai J
    J Genet Genomics; 2009 Aug; 36(8):475-82. PubMed ID: 19683670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural antisense transcripts as drug targets.
    Khorkova O; Stahl J; Joji A; Volmar CH; Zeier Z; Wahlestedt C
    Front Mol Biosci; 2022; 9():978375. PubMed ID: 36250017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals.
    Seth PP; Siwkowski A; Allerson CR; Vasquez G; Lee S; Prakash TP; Wancewicz EV; Witchell D; Swayze EE
    J Med Chem; 2009 Jan; 52(1):10-3. PubMed ID: 19086780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The spliceosome: a self-organized macromolecular machine in the nucleus?
    Rino J; Carmo-Fonseca M
    Trends Cell Biol; 2009 Aug; 19(8):375-84. PubMed ID: 19616950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.
    Matos L; Gonçalves V; Pinto E; Laranjeira F; Prata MJ; Jordan P; Desviat LR; Pérez B; Alves S
    Data Brief; 2015 Dec; 5():810-7. PubMed ID: 26693516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antisense oligonucleotides - the way forward.
    Wahlestedt C; Good L
    Curr Opin Drug Discov Devel; 1999 Mar; 2(2):142-6. PubMed ID: 19649940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Corrigendum to "From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides".
    Mol Ther Nucleic Acids; 2016 Nov; 5(11):e391. PubMed ID: 27898093
    [No Abstract]   [Full Text] [Related]  

  • 57. New approaches for cancer treatment: antitumor drugs based on gene-targeted nucleic acids.
    Patutina OA; Mironova NL; Vlassov VV; Zenkova MA
    Acta Naturae; 2009 Jul; 1(2):44-60. PubMed ID: 22649602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Evolution of Antisense Oligonucleotide Chemistry-A Personal Journey.
    Agrawal S
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34063675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reply to comment on: A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides.
    Dominov JA; Uyan Ö; Sapp PC; McKenna-Yasek D; Nallamilli BR; Hegde M; Brown RH
    Ann Clin Transl Neurol; 2015 Jul; 2(7):785. PubMed ID: 26290895
    [No Abstract]   [Full Text] [Related]  

  • 60. Comment on: A novel dysferlin-mutant pseudoexon bypassed with antisense oligonucleotides.
    Kergourlay V; Blandin G; Blanck V; Lévy N; Bartoli M; Krahn M
    Ann Clin Transl Neurol; 2015 Jul; 2(7):783-4. PubMed ID: 26273692
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.