BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 19649976)

  • 1. The role of corticotropin-releasing factor and its receptors in the central nervous system.
    Heinrichs SC
    Curr Opin Drug Discov Devel; 1999 Sep; 2(5):491-6. PubMed ID: 19649976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticotropin-releasing factor antagonists, binding-protein and receptors: implications for central nervous system disorders.
    Heinrichs SC; De Souza EB
    Baillieres Best Pract Res Clin Endocrinol Metab; 1999 Dec; 13(4):541-54. PubMed ID: 10903813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation.
    Heinrichs SC; Koob GF
    J Pharmacol Exp Ther; 2004 Nov; 311(2):427-40. PubMed ID: 15297468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central hyperventilatory action of the stress-related neurohormonal peptides, corticotropin-releasing factor and urotensin-I in the trout Oncorhynchus mykiss.
    Le Mével JC; Lancien F; Mimassi N; Conlon JM
    Gen Comp Endocrinol; 2009 Oct; 164(1):51-60. PubMed ID: 19341734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of the corticotropin-releasing factor system in zebrafish.
    Alderman SL; Bernier NJ
    Gen Comp Endocrinol; 2009 Oct; 164(1):61-9. PubMed ID: 19366623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evidence for ligand-specific receptor activation in the central CRF system, as measured by local cerebral glucose utilization.
    Warnock G; Moechars D; Langlois X; Steckler T
    Peptides; 2009 May; 30(5):947-54. PubMed ID: 19428773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and neuroendocrine responses to RXFP3 modulation in the central nervous system.
    Sutton SW; Shelton J; Smith C; Williams J; Yun S; Motley T; Kuei C; Bonaventure P; Gundlach A; Liu C; Lovenberg T
    Ann N Y Acad Sci; 2009 Apr; 1160():242-9. PubMed ID: 19416196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotine suppresses energy storage through activation of sympathetic outflow to brown adipose tissue via corticotropin-releasing factor type 1 receptor.
    Mano-Otagiri A; Iwasaki-Sekino A; Ohata H; Arai K; Shibasaki T
    Neurosci Lett; 2009 May; 455(1):26-9. PubMed ID: 19429100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-environment interactions resulting in risk alcohol drinking behaviour are mediated by CRF and CRF1.
    Clarke TK; Schumann G
    Pharmacol Biochem Behav; 2009 Sep; 93(3):230-6. PubMed ID: 19409922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of calcitonin gene-related peptide and its receptors in pain-related behavioral responses in the central nervous system.
    Yu LC; Hou JF; Fu FH; Zhang YX
    Neurosci Biobehav Rev; 2009 Sep; 33(8):1185-91. PubMed ID: 19747596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy to minimize reactive metabolite formation: discovery of (S)-4-(1-cyclopropyl-2-methoxyethyl)-6-[6-(difluoromethoxy)-2,5-dimethylpyridin-3-ylamino]-5-oxo-4,5-dihydropyrazine-2-carbonitrile as a potent, orally bioavailable corticotropin-releasing factor-1 receptor antagonist.
    Hartz RA; Ahuja VT; Zhuo X; Mattson RJ; Denhart DJ; Deskus JA; Vrudhula VM; Pan S; Ditta JL; Shu YZ; Grace JE; Lentz KA; Lelas S; Li YW; Molski TF; Krishnananthan S; Wong H; Qian-Cutrone J; Schartman R; Denton R; Lodge NJ; Zaczek R; Macor JE; Bronson JJ
    J Med Chem; 2009 Dec; 52(23):7653-68. PubMed ID: 19954247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro intrinsic clearance-based optimization of N3-phenylpyrazinones as corticotropin-releasing factor-1 (CRF1) receptor antagonists.
    Hartz RA; Ahuja VT; Rafalski M; Schmitz WD; Brenner AB; Denhart DJ; Ditta JL; Deskus JA; Yue EW; Arvanitis AG; Lelas S; Li YW; Molski TF; Wong H; Grace JE; Lentz KA; Li J; Lodge NJ; Zaczek R; Combs AP; Olson RE; Mattson RJ; Bronson JJ; Macor JE
    J Med Chem; 2009 Jul; 52(14):4161-72. PubMed ID: 19552436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Neuropeptide Y--structure, receptors, effect and its place in psychiatry].
    Bobińska K; Szemraj J; Pietras T; Zboralski K; Gałecki P
    Psychiatr Pol; 2008; 42(6):889-901. PubMed ID: 19441666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioids and sensory nerves.
    Stein C; Zöllner C
    Handb Exp Pharmacol; 2009; (194):495-518. PubMed ID: 19655116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stress: a neurobiological perspective].
    de Kloet ER
    Tijdschr Psychiatr; 2009; 51(8):541-50. PubMed ID: 19658066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRH signaling. Molecular specificity for drug targeting in the CNS.
    Refojo D; Holsboer F
    Ann N Y Acad Sci; 2009 Oct; 1179():106-19. PubMed ID: 19906235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endocrine control of salt balance in insects.
    Coast G
    Gen Comp Endocrinol; 2007; 152(2-3):332-8. PubMed ID: 17400222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane cholesterol depletion enhances ligand binding function of human serotonin1A receptors in neuronal cells.
    Prasad R; Paila YD; Chattopadhyay A
    Biochem Biophys Res Commun; 2009 Dec; 390(1):93-6. PubMed ID: 19781522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bivalent argininamide-type neuropeptide y y(1) antagonists do not support the hypothesis of receptor dimerisation.
    Keller M; Teng S; Bernhardt G; Buschauer A
    ChemMedChem; 2009 Oct; 4(10):1733-45. PubMed ID: 19672917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endocannabinoid system: An overview of its potential in current medical practice.
    Mouslech Z; Valla V
    Neuro Endocrinol Lett; 2009; 30(2):153-79. PubMed ID: 19675519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.