BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19650664)

  • 1. Biophysical and stabilization studies of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein.
    Cai S; He F; Samra HS; de la Maza LM; Bottazzi ME; Joshi SB; Middaugh CR
    Mol Pharm; 2009; 6(5):1553-61. PubMed ID: 19650664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein.
    Sun G; Pal S; Weiland J; Peterson EM; de la Maza LM
    Vaccine; 2009 Aug; 27(36):5020-5. PubMed ID: 19446590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine.
    Tifrea DF; Sun G; Pal S; Zardeneta G; Cocco MJ; Popot JL; de la Maza LM
    Vaccine; 2011 Jun; 29(28):4623-31. PubMed ID: 21550371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis.
    Feinstein HE; Tifrea D; Sun G; Popot JL; de la Maza LM; Cocco MJ
    J Membr Biol; 2014 Oct; 247(9-10):1053-65. PubMed ID: 24942817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin.
    Cheng C; Bettahi I; Cruz-Fisher MI; Pal S; Jain P; Jia Z; Holmgren J; Harandi AM; de la Maza LM
    Vaccine; 2009 Oct; 27(44):6239-46. PubMed ID: 19686693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal chlamydial challenge.
    Pal S; Davis HL; Peterson EM; de la Maza LM
    Infect Immun; 2002 Sep; 70(9):4812-7. PubMed ID: 12183524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of protection in mice against a respiratory challenge by a vaccine formulated with the Chlamydia major outer membrane protein adjuvanted with IC31®.
    Cheng C; Cruz-Fisher MI; Tifrea D; Pal S; Wizel B; de la Maza LM
    Vaccine; 2011 Mar; 29(13):2437-43. PubMed ID: 21276442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccination with major outer membrane protein proteosomes elicits protection in mice against a Chlamydia respiratory challenge.
    Tifrea DF; Pal S; Toussi DN; Massari P; de la Maza LM
    Microbes Infect; 2013 Nov; 15(13):920-7. PubMed ID: 23999313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model.
    Cheng C; Pal S; Bettahi I; Oxford KL; Barry PA; de la Maza LM
    Vaccine; 2011 Apr; 29(18):3456-64. PubMed ID: 21376796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine.
    Kari L; Whitmire WM; Crane DD; Reveneau N; Carlson JH; Goheen MM; Peterson EM; Pal S; de la Maza LM; Caldwell HD
    J Immunol; 2009 Jun; 182(12):8063-70. PubMed ID: 19494332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles.
    Rose F; Karlsen K; Jensen PR; Jakobsen RU; Wood GK; Rand KD; Godiksen H; Andersen P; Follmann F; Foged C
    J Pharm Sci; 2018 Jun; 107(6):1690-1700. PubMed ID: 29452143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge.
    Pal S; Theodor I; Peterson EM; de la Maza LM
    Infect Immun; 2001 Oct; 69(10):6240-7. PubMed ID: 11553566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis.
    Sun G; Pal S; Sarcon AK; Kim S; Sugawara E; Nikaido H; Cocco MJ; Peterson EM; de la Maza LM
    J Bacteriol; 2007 Sep; 189(17):6222-35. PubMed ID: 17601785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge.
    Pal S; Theodor I; Peterson EM; de la Maza LM
    Infect Immun; 1997 Aug; 65(8):3361-9. PubMed ID: 9234798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria.
    Pal S; Peterson EM; de la Maza LM
    Infect Immun; 2005 Dec; 73(12):8153-60. PubMed ID: 16299310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model.
    Jiang P; Cai Y; Chen J; Ye X; Mao S; Zhu S; Xue X; Chen S; Zhang L
    Vaccine; 2017 May; 35(23):3096-3103. PubMed ID: 28456528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunization with the Chlamydia trachomatis major outer membrane protein, using the outer surface protein A of Borrelia burgdorferi as an adjuvant, can induce protection against a chlamydial genital challenge.
    Pal S; Luke CJ; Barbour AG; Peterson EM; de la Maza LM
    Vaccine; 2003 Mar; 21(13-14):1455-65. PubMed ID: 12615442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection.
    Wang L; Cai Y; Xiong Y; Du W; Cen D; Zhang C; Song Y; Zhu S; Xue X; Zhang L
    Oncotarget; 2017 May; 8(20):33241-33251. PubMed ID: 28402260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions.
    Bhambhani A; Kissmann JM; Joshi SB; Volkin DB; Kashi RS; Middaugh CR
    J Pharm Sci; 2012 Mar; 101(3):1120-35. PubMed ID: 22147527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein.
    Yen TY; Pal S; de la Maza LM
    Biochemistry; 2005 Apr; 44(16):6250-6. PubMed ID: 15835913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.