These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19651202)

  • 1. The influence of modes of action and physicochemical properties of chemicals on the correlation between in vitro and acute fish toxicity data.
    Kramer NI; Hermens JL; Schirmer K
    Toxicol In Vitro; 2009 Oct; 23(7):1372-9. PubMed ID: 19651202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals.
    Gülden M; Seibert H
    Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.
    Schirmer K; Tanneberger K; Kramer NI; Völker D; Scholz S; Hafner C; Lee LE; Bols NC; Hermens JL
    Aquat Toxicol; 2008 Nov; 90(2):128-37. PubMed ID: 18829120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration.
    Gülden M; Mörchel S; Seibert H
    Aquat Toxicol; 2005 Feb; 71(3):229-36. PubMed ID: 15670629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative read-across for predicting the acute fish toxicity of organic compounds.
    Schüürmann G; Ebert RU; Kühne R
    Environ Sci Technol; 2011 May; 45(10):4616-22. PubMed ID: 21491860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of organic chemicals to fathead minnow: a united quantitative structure-activity relationship model and its application.
    Feng L; Han S; Zhao Y; Wang L; Chen J
    Chem Res Toxicol; 1996; 9(3):610-3. PubMed ID: 8728506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR modelling of the ERL-D fathead minnow acute toxicity database.
    Nendza M; Russom CL
    Xenobiotica; 1991 Feb; 21(2):147-70. PubMed ID: 2058173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of basal cytotoxicity data between mammalian and fish cell lines: a literature survey.
    Castaño A; Gómez-Lechón MJ
    Toxicol In Vitro; 2005 Aug; 19(5):695-705. PubMed ID: 15893445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action.
    Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH
    Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing contaminant sensitivity of endangered and threatened aquatic species: part I. Acute toxicity of five chemicals.
    Dwyer FJ; Mayer FL; Sappington LC; Buckler DR; Bridges CM; Greer IE; Hardesty DK; Henke CE; Ingersoll CG; Kunz JL; Whites DW; Augspurger T; Mount DR; Hattala K; Neuderfer GN
    Arch Environ Contam Toxicol; 2005 Feb; 48(2):143-54. PubMed ID: 15772881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fathead minnow in aquatic toxicology: past, present and future.
    Ankley GT; Villeneuve DL
    Aquat Toxicol; 2006 Jun; 78(1):91-102. PubMed ID: 16494955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population growth impairment of aliphatic alcohols to Tetrahymena.
    Schultz TW; Seward-Nagel J; Foster KA; Tucker VA
    Environ Toxicol; 2004 Feb; 19(1):1-10. PubMed ID: 14758588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro sensitivity of granulo-monocytic progenitors as a new toxicological cell system and endpoint in the ACuteTox Project.
    Cerrato L; Valeri A; Bueren JA; Albella B
    Toxicol Appl Pharmacol; 2009 Jul; 238(2):111-9. PubMed ID: 19442680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity assessment of organic pollutants: reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri.
    Parvez S; Venkataraman C; Mukherji S
    Toxicol In Vitro; 2008 Oct; 22(7):1806-13. PubMed ID: 18701087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endpoint sensitivity in fish endocrine disruption assays: regulatory implications.
    Dang Z; Li K; Yin H; Hakkert B; Vermeire T
    Toxicol Lett; 2011 Apr; 202(1):36-46. PubMed ID: 21295121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of sensitivity of spirotox biotest with standard toxicity tests.
    Nałecz-Jawecki G; Sawicki J
    Arch Environ Contam Toxicol; 2002 May; 42(4):389-95. PubMed ID: 11994778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.