BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19651276)

  • 21. Temporal stride and force analysis of cane-assisted gait in people with hemiplegic stroke.
    Chen CL; Chen HC; Wong MK; Tang FT; Chen RS
    Arch Phys Med Rehabil; 2001 Jan; 82(1):43-8. PubMed ID: 11239285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeatability and variation of quantitative gait data in subgroups of patients with stroke.
    Oken O; Yavuzer G; Ergöçen S; Yorgancioglu ZR; Stam HJ
    Gait Posture; 2008 Apr; 27(3):506-11. PubMed ID: 17689965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximum walking speed is a key determinant of long distance walking function after stroke.
    Awad LN; Reisman DS; Wright TR; Roos MA; Binder-Macleod SA
    Top Stroke Rehabil; 2014; 21(6):502-9. PubMed ID: 25467398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of upper limb muscle activity in four walking canes: a preliminary study.
    Chiou-Tan FY; Magee KN; Krouskop TA
    J Rehabil Res Dev; 1999 Apr; 36(2):94-9. PubMed ID: 10661525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effectiveness of a rehabilitation dog in fostering gait retraining for adults with a recent stroke: a multiple single-case study.
    Rondeau L; Corriveau H; Bier N; Camden C; Champagne N; Dion C
    NeuroRehabilitation; 2010; 27(2):155-63. PubMed ID: 20871145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hip abductor control in walking following stroke -- the immediate effect of canes, taping and TheraTogs on gait.
    Maguire C; Sieben JM; Frank M; Romkes J
    Clin Rehabil; 2010 Jan; 24(1):37-45. PubMed ID: 19906767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects.
    Saremi K; Marehbian J; Yan X; Regnaux JP; Elashoff R; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2006 Jun; 20(2):297-305. PubMed ID: 16679506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop.
    Laufer Y; Ring H; Sprecher E; Hausdorff JM
    J Neurol Phys Ther; 2009 Jun; 33(2):104-10. PubMed ID: 19556919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Which type of cane is the most efficient, based on oxygen consumption and balance capacity, in chronic stroke patients?
    Jeong YG; Jeong YJ; Myong JP; Koo JW
    Gait Posture; 2015 Feb; 41(2):493-8. PubMed ID: 25533049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of walking with a cane on balance and social participation among community-dwelling post-stroke individuals.
    Hamzat TK; Kobiri A
    Eur J Phys Rehabil Med; 2008 Jun; 44(2):121-6. PubMed ID: 18418331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biomechanical evaluation of visually impaired persons' gait and long-cane mechanics.
    Ramsey VK; Blasch BB; Kita A; Johnson BF
    J Rehabil Res Dev; 1999 Oct; 36(4):323-32. PubMed ID: 10678455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feasibility of Measuring Ventilatory Threshold in Adults With Stroke-Induced Hemiparesis: Implications for Exercise Prescription.
    Bosch PR; Holzapfel S; Traustadottir T
    Arch Phys Med Rehabil; 2015 Oct; 96(10):1779-84. PubMed ID: 25979162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. When might a cane be necessary for walking following a stroke?
    Guillebastre B; Rougier PR; Sibille B; Chrispin A; Detante O; Pérennou DA
    Neurorehabil Neural Repair; 2012 Feb; 26(2):173-7. PubMed ID: 21734069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of cane use on hip contact force.
    Brand RA; Crowninshield RD
    Clin Orthop Relat Res; 1980; (147):181-4. PubMed ID: 7371290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Walkaround: mobile balance support for therapy of walking.
    Veg A; Popović DB
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):264-9. PubMed ID: 18586605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some biomechanical aspects of crutch and cane walking: the relationship between forward rate of progression, symmetry, and efficiency--a case report.
    McDonough AL; Razza-Doherty M
    Clin Podiatr Med Surg; 1988 Jul; 5(3):677-93. PubMed ID: 3395953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional status and factors influencing the rehabilitation outcome of people affected by above-knee amputation and hemiparesis.
    Brunelli S; Averna T; Porcacchia P; Paolucci S; Di Meo F; Traballesi M
    Arch Phys Med Rehabil; 2006 Jul; 87(7):995-1000. PubMed ID: 16813789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of spasticity, sense and walking aids in falls of people after chronic stroke.
    Soyuer F; Oztürk A
    Disabil Rehabil; 2007 May; 29(9):679-87. PubMed ID: 17453990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between walking velocity and distance and the symmetry of temporospatial parameters in chronic post-stroke subjects.
    Guzik A; Drużbicki M; Przysada G; Kwolek A; Brzozowska-Magoń A; Sobolewski M
    Acta Bioeng Biomech; 2017; 19(3):147-154. PubMed ID: 29205208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.