BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19651443)

  • 1. Rubredoxin as a paramagnetic relaxation-inducing probe.
    Almeida RM; Pauleta SR; Moura I; Moura JJ
    J Inorg Biochem; 2009 Sep; 103(9):1245-53. PubMed ID: 19651443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide reductase: different interaction modes with its two redox partners.
    Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR
    Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3.
    Almeida RM; Geraldes CF; Pauleta SR; Moura JJ
    Inorg Chem; 2011 Nov; 50(21):10600-7. PubMed ID: 21957905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states.
    Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV
    J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin.
    Worrall JA; Reinle W; Bernhardt R; Ubbink M
    Biochemistry; 2003 Jun; 42(23):7068-76. PubMed ID: 12795602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ternary complex of cytochrome f and cytochrome c: identification of a second binding site and competition for plastocyanin binding.
    Crowley PB; Rabe KS; Worrall JA; Canters GW; Ubbink M
    Chembiochem; 2002 Jun; 3(6):526-33. PubMed ID: 12325008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of cytochrome c with cytochrome c oxidase: an NMR study on two soluble fragments derived from Paracoccus denitrificans.
    Wienk H; Maneg O; Lücke C; Pristovsek P; Löhr F; Ludwig B; Rüterjans H
    Biochemistry; 2003 May; 42(20):6005-12. PubMed ID: 12755602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding, conformational changes, and dynamics of cytochromes C probed by NMR spectroscopy.
    Bren KL; Kellogg JA; Kaur R; Wen X
    Inorg Chem; 2004 Dec; 43(25):7934-44. PubMed ID: 15578827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties.
    Kümmerle R; Zhuang-Jackson H; Gaillard J; Moulis JM
    Biochemistry; 1997 Dec; 36(50):15983-91. PubMed ID: 9398333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of the cytochrome c3-rubredoxin complex from Desulfovibrio vulgaris.
    Stewart DE; Wampler JE
    Proteins; 1991; 11(2):142-52. PubMed ID: 1658779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase.
    Pauleta SR; Cooper A; Nutley M; Errington N; Harding S; Guerlesquin F; Goodhew CF; Moura I; Moura JJ; Pettigrew GW
    Biochemistry; 2004 Nov; 43(46):14566-76. PubMed ID: 15544327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of ligands originates small perturbations on the microscopic thermodynamic properties of a multicentre redox protein.
    Salgueiro CA; Morgado L; Fonseca B; Lamosa P; Catarino T; Turner DL; Louro RO
    FEBS J; 2005 May; 272(9):2251-60. PubMed ID: 15853810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the binding interface of the cytochrome b5-cytochrome c complex by nuclear magnetic resonance.
    Shao W; Im SC; Zuiderweg ER; Waskell L
    Biochemistry; 2003 Dec; 42(50):14774-84. PubMed ID: 14674751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking and molecular dynamics simulation of the Azurin-Cytochrome c551 electron transfer complex.
    Bizzarri AR; Brunori E; Bonanni B; Cannistraro S
    J Mol Recognit; 2007; 20(2):122-31. PubMed ID: 17407190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of cytochrome c3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway.
    Bruschi M; Hatchikian CE; Golovleva LA; Gall JL
    J Bacteriol; 1977 Jan; 129(1):30-8. PubMed ID: 187570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR.
    Vlasie MD; Fernández-Busnadiego R; Prudêncio M; Ubbink M
    J Mol Biol; 2008 Feb; 375(5):1405-15. PubMed ID: 18083191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum.
    Maher M; Cross M; Wilce MC; Guss JM; Wedd AG
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):298-303. PubMed ID: 14747706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.