BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19651525)

  • 1. Charge-separation reactions of doubly-protonated peptides: effect of peptide chain length.
    Harrison AG
    J Am Soc Mass Spectrom; 2009 Oct; 20(10):1890-5. PubMed ID: 19651525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage.
    Paizs B; Suhai S
    J Am Soc Mass Spectrom; 2004 Jan; 15(1):103-13. PubMed ID: 14698560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation of doubly-protonated Pro-His-Xaa tripeptides: formation of b(2)(2+) ions.
    Knapp-Mohammady M; Young AB; Paizs B; Harrison AG
    J Am Soc Mass Spectrom; 2009 Nov; 20(11):2135-43. PubMed ID: 19683937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides.
    Tsaprailis G; Nair H; Zhong W; Kuppannan K; Futrell JH; Wysocki VH
    Anal Chem; 2004 Apr; 76(7):2083-94. PubMed ID: 15053674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosing the protonation site of b2 peptide fragment ions using IRMPD in the X-H (X = O, N, and C) stretching region.
    Sinha RK; Erlekam U; Bythell BJ; Paizs B; Maître P
    J Am Soc Mass Spectrom; 2011 Sep; 22(9):1645-50. PubMed ID: 21953267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation of protonated oligoalanines: amide bond cleavage and beyond.
    Harrison AG; Young AB
    J Am Soc Mass Spectrom; 2004 Dec; 15(12):1810-9. PubMed ID: 15589757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is the structure of b(2) ions generated from doubly protonated tryptic peptides?
    Bythell BJ; Somogyi A; Paizs B
    J Am Soc Mass Spectrom; 2009 Apr; 20(4):618-24. PubMed ID: 19109036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the identity of Xaa on the fragmentation modes of doubly-protonated Ala-Ala-Xaa-Ala-Ala-Ala-Arg.
    Harrison AG
    J Am Soc Mass Spectrom; 2011 May; 22(5):906-11. PubMed ID: 21472525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp).
    Bleiholder C; Suhai S; Harrison AG; Paizs B
    J Am Soc Mass Spectrom; 2011 Jun; 22(6):1032-9. PubMed ID: 21953044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chemical mass spectrometry: Ab initio study of b
    Cautereels J; Giribaldi J; Enjalbal C; Blockhuys F
    Rapid Commun Mass Spectrom; 2020 Jun; 34(12):e8778. PubMed ID: 32144813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides.
    Willard BB; Kinter M
    J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
    Bythell BJ; Suhai S; Somogyi A; Paizs B
    J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative charge ratio between C and N atoms in amide bond acts as a key factor to determine peptide fragment efficiency in different charge states.
    Sun F; Zong W; Liu R; Wang M; Zhang P; Xu Q
    J Am Soc Mass Spectrom; 2010 Nov; 21(11):1857-62. PubMed ID: 20688527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b(2), y(1), and y(2) ions.
    Paizs B; Suhai S
    Rapid Commun Mass Spectrom; 2002; 16(5):375-89. PubMed ID: 11857721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size Dependent Fragmentation Chemistry of Short Doubly Protonated Tryptic Peptides.
    Guan S; Bythell BJ
    J Am Soc Mass Spectrom; 2021 Apr; 32(4):1020-1032. PubMed ID: 33779179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation characteristics of b(n) (n=2-15) ions from protonated peptides.
    Rivera-Tirado E; Wesdemiotis C
    Rapid Commun Mass Spectrom; 2011 Aug; 25(16):2283-90. PubMed ID: 21755549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic NH and OH vibrations for oxazolone and diketopiperazine structures: b2 from protonated triglycine.
    Wang D; Gulyuz K; Stedwell CN; Polfer NC
    J Am Soc Mass Spectrom; 2011 Jul; 22(7):1197-203. PubMed ID: 21953102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining Linear Free Energy Relationships in Peptide Fragmentation Using Derivatization and Targeted Mass Spectrometry.
    Shen Y; Nemati R; Wang L; Yao X
    Anal Chem; 2018 Feb; 90(3):1587-1594. PubMed ID: 29281784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.