BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 19651606)

  • 1. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
    Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
    Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA
    Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays.
    Bass MV; Nikitina T; Norouzi D; Zhurkin VB; Grigoryev SA
    J Biol Chem; 2019 Mar; 294(11):4233-4246. PubMed ID: 30630950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin.
    Bednar J; Horowitz RA; Grigoryev SA; Carruthers LM; Hansen JC; Koster AJ; Woodcock CL
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14173-8. PubMed ID: 9826673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
    Grigoryev SA; Bascom G; Buckwalter JM; Schubert MB; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1238-43. PubMed ID: 26787893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
    Arya G; Schlick T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16236-41. PubMed ID: 17060627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker DNA Length is a Key to Tri-nucleosome Folding.
    Kenzaki H; Takada S
    J Mol Biol; 2021 Mar; 433(6):166792. PubMed ID: 33383034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes.
    Collepardo-Guevara R; Schlick T
    Nucleic Acids Res; 2012 Oct; 40(18):8803-17. PubMed ID: 22790986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
    Kruithof M; Chien FT; Routh A; Logie C; Rhodes D; van Noort J
    Nat Struct Mol Biol; 2009 May; 16(5):534-40. PubMed ID: 19377481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatosome Structure and Dynamics from Molecular Simulations.
    Öztürk MA; De M; Cojocaru V; Wade RC
    Annu Rev Phys Chem; 2020 Apr; 71():101-119. PubMed ID: 32017651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.