BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19651811)

  • 1. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue.
    Baba SP; Barski OA; Ahmed Y; O'Toole TE; Conklin DJ; Bhatnagar A; Srivastava S
    Diabetes; 2009 Nov; 58(11):2486-97. PubMed ID: 19651811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE).
    Baba SP; Hellmann J; Srivastava S; Bhatnagar A
    Chem Biol Interact; 2011 May; 191(1-3):357-63. PubMed ID: 21276777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldose reductase protects against early atherosclerotic lesion formation in apolipoprotein E-null mice.
    Srivastava S; Vladykovskaya E; Barski OA; Spite M; Kaiserova K; Petrash JM; Chung SS; Hunt G; Dawn B; Bhatnagar A
    Circ Res; 2009 Oct; 105(8):793-802. PubMed ID: 19729598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion.
    Thiagarajan D; O' Shea K; Sreejit G; Ananthakrishnan R; Quadri N; Li Q; Schmidt AM; Gabbay K; Ramasamy R
    PLoS One; 2017; 12(11):e0188981. PubMed ID: 29190815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldose reductase promotes diet-induced obesity via induction of senescence in subcutaneous adipose tissue.
    Thiagarajan D; Quadri N; Jawahar S; Zirpoli H; Del Pozo CH; López-Díez R; Hasan SN; Yepuri G; Gugger PF; Finlin BS; Kern PA; Gabbay K; Schmidt AM; Ramasamy R
    Obesity (Silver Spring); 2022 Aug; 30(8):1647-1658. PubMed ID: 35894077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells.
    Morgenstern J; Fleming T; Schumacher D; Eckstein V; Freichel M; Herzig S; Nawroth P
    J Biol Chem; 2017 Feb; 292(8):3224-3238. PubMed ID: 27956549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction.
    Blackburn NJR; Vulesevic B; McNeill B; Cimenci CE; Ahmadi A; Gonzalez-Gomez M; Ostojic A; Zhong Z; Brownlee M; Beisswenger PJ; Milne RW; Suuronen EJ
    Basic Res Cardiol; 2017 Sep; 112(5):57. PubMed ID: 28864889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain.
    Koike S; Ando C; Usui Y; Kibune Y; Nishimoto S; Suzuki T; Ogasawara Y
    Brain Res Bull; 2019 Jan; 144():164-170. PubMed ID: 30508605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.
    Spite M; Baba SP; Ahmed Y; Barski OA; Nijhawan K; Petrash JM; Bhatnagar A; Srivastava S
    Biochem J; 2007 Jul; 405(1):95-105. PubMed ID: 17381426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications.
    Vander Jagt DL; Hassebrook RK; Hunsaker LA; Brown WM; Royer RE
    Chem Biol Interact; 2001 Jan; 130-132(1-3):549-62. PubMed ID: 11306074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet.
    Zhao Y; Zhu Y; Wang P; Sang S
    J Agric Food Chem; 2020 Jul; 68(28):7416-7424. PubMed ID: 32573222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7.
    Kabututu Z; Manin M; Pointud JC; Maruyama T; Nagata N; Lambert S; Lefrançois-Martinez AM; Martinez A; Urade Y
    J Biochem; 2009 Feb; 145(2):161-8. PubMed ID: 19010934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of AKR1B16, a novel mouse aldo-keto reductase.
    Giménez-Dejoz J; Weber S; Barski OA; Möller G; Adamski J; Parés X; Porté S; Farrés J
    Chem Biol Interact; 2017 Oct; 276():182-193. PubMed ID: 28322781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency.
    Ii S; Ohta M; Kudo E; Yamaoka T; Tachikawa T; Moritani M; Itakura M; Yoshimoto K
    Diabetologia; 2004 Mar; 47(3):541-548. PubMed ID: 14968292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.
    Cook PN; Ward WH; Petrash JM; Mirrlees DJ; Sennitt CM; Carey F; Preston J; Brittain DR; Tuffin DP; Howe R
    Biochem Pharmacol; 1995 Apr; 49(8):1043-9. PubMed ID: 7748183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase.
    Vander Jagt DL; Hunsaker LA
    Chem Biol Interact; 2003 Feb; 143-144():341-51. PubMed ID: 12604221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldo-keto reductases as modulators of stress response.
    Chang Q; Harter TM; Rikimaru LT; Petrash JM
    Chem Biol Interact; 2003 Feb; 143-144():325-32. PubMed ID: 12604219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.
    Lu J; Xiang G; Liu M; Mei W; Xiang L; Dong J
    Atherosclerosis; 2015 Dec; 243(2):438-48. PubMed ID: 26520898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.