These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19652279)

  • 21. Synthesis of InN@SiO₂ nanostructures and fabrication of blue LED devices.
    Gautam A; van Veggel FC
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3902-9. PubMed ID: 22738190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A growth interruption technique for stacking fault-free nanowire superlattices.
    Mohseni PK; LaPierre RR
    Nanotechnology; 2009 Jan; 20(2):025610. PubMed ID: 19417279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and luminescence properties of alumina encapsulated InN nanorods.
    Mann AK; Varandani D; Mehta BR; Malhotra LK; Mangamma G; Tyagi AK
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6290-6. PubMed ID: 19205196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen mediated synthesis of high quality InN nanowires above their decomposition temperature.
    Quddus EB; Wilson A; Webb RA; Koley G
    Nanoscale; 2014 Jan; 6(2):1166-72. PubMed ID: 24296526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The immiscibility of InAlN ternary alloy.
    Zhao G; Xu X; Li H; Wei H; Han D; Ji Z; Meng Y; Wang L; Yang S
    Sci Rep; 2016 May; 6():26600. PubMed ID: 27221345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of phonon sideband emission in intrinsic InN nanowires: a photoluminescence and micro-Raman scattering study.
    Zhao S; Wang Q; Mi Z; Fathololoumi S; Gonzalez T; Andrews MP
    Nanotechnology; 2012 Oct; 23(41):415706. PubMed ID: 23018196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoluminescence properties of non-tapered InN nanorods grown by plasma-assisted metalorganic chemical vapor phase deposition.
    Seo HW; Norman DP; Yuan L; Tu LW; Chiang SY
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6783-6. PubMed ID: 21137797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoluminescence and intrinsic properties of MBE-grown InN nanowires.
    Stoica T; Meijers RJ; Calarco R; Richter T; Sutter E; Lüth H
    Nano Lett; 2006 Jul; 6(7):1541-7. PubMed ID: 16834446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth Mechanism and Properties of Self-Assembled InN Nanocolumns on Al Covered Si(111) Substrates by PA-MBE.
    Casallas-Moreno YL; Gallardo-Hernández S; Yee-Rendón CM; Ramírez-López M; Guillén-Cervantes A; Arias-Cerón JS; Huerta-Ruelas J; Santoyo-Salazar J; Mendoza-Álvarez JG; López-López M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31574912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation and characterization of multilayer GeSi nanowires on miscut Si (001) substrates.
    Gong H; Chen P; Ma Y; Wang L; Rastelli A; Schmidt OG; Zhong Z
    J Nanosci Nanotechnol; 2013 Feb; 13(2):834-8. PubMed ID: 23646525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ TEM observation of the growth and decomposition of monoclinic W(18)O(49) nanowires.
    Chen CL; Mori H
    Nanotechnology; 2009 Jul; 20(28):285604. PubMed ID: 19550017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the blurring in stencil lithography.
    Vazquez-Mena O; Villanueva LG; Savu V; Sidler K; Langlet P; Brugger J
    Nanotechnology; 2009 Oct; 20(41):415303. PubMed ID: 19762941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.
    Chou YC; Tang W; Chiou CJ; Chen K; Minor AM; Tu KN
    Nano Lett; 2015 Jun; 15(6):4121-8. PubMed ID: 25965773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examining the anomalous electrical characteristics observed in InN nanowires.
    Chaudhry A; Islam MS
    J Nanosci Nanotechnol; 2008 Jan; 8(1):222-7. PubMed ID: 18468063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct synthesis of silicon oxide nanowires on organic polymer substrates.
    Yun J; Jeong Y; Lee GH
    Nanotechnology; 2009 Sep; 20(36):365606. PubMed ID: 19687544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing Nucleation Mechanism of Self-Catalyzed InN Nanostructures.
    Xu G; Li Z; Baca J; Wu J
    Nanoscale Res Lett; 2009 Sep; 5(1):7-13. PubMed ID: 20652103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires.
    Wen CY; Reuter MC; Bruley J; Tersoff J; Kodambaka S; Stach EA; Ross FM
    Science; 2009 Nov; 326(5957):1247-50. PubMed ID: 19965471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoconduction mechanism of oxygen sensitization in InN nanowires.
    Chen RS; Yang TH; Chen HY; Chen LC; Chen KH; Yang YJ; Su CH; Lin CR
    Nanotechnology; 2011 Oct; 22(42):425702. PubMed ID: 21934198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epitaxial III-V films and surfaces for photoelectrocatalysis.
    Döscher H; Supplie O; May MM; Sippel P; Heine C; Muñoz AG; Eichberger R; Lewerenz HJ; Hannappel T
    Chemphyschem; 2012 Aug; 13(12):2899-909. PubMed ID: 22890851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.