BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19652459)

  • 1. Cytotoxicity of nanoparticles independent from oxidative stress.
    Fröhlich E; Samberger C; Kueznik T; Absenger M; Roblegg E; Zimmer A; Pieber TR
    J Toxicol Sci; 2009 Oct; 34(4):363-75. PubMed ID: 19652459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular calcium levels as screening tool for nanoparticle toxicity.
    Meindl C; Kueznik T; Bösch M; Roblegg E; Fröhlich E
    J Appl Toxicol; 2015 Oct; 35(10):1150-9. PubMed ID: 25976553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of whole genome expression analysis in the toxicity screening of nanoparticles.
    Fröhlich E; Meindl C; Wagner K; Leitinger G; Roblegg E
    Toxicol Appl Pharmacol; 2014 Oct; 280(2):272-84. PubMed ID: 25102311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity.
    Fröhlich E; Meindl C; Roblegg E; Ebner B; Absenger M; Pieber TR
    Part Fibre Toxicol; 2012 Jul; 9():26. PubMed ID: 22789069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and toxicity of polystyrene micro/nanoplastics in gastric cells: Effects of particle size and surface functionalization.
    Banerjee A; Billey LO; Shelver WL
    PLoS One; 2021; 16(12):e0260803. PubMed ID: 34971556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microplastics and nanoplastics: Size, surface and dispersant - What causes the effect?
    Stock V; Böhmert L; Coban G; Tyra G; Vollbrecht ML; Voss L; Paul MB; Braeuning A; Sieg H
    Toxicol In Vitro; 2022 Apr; 80():105314. PubMed ID: 35033651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-sized and micro-sized polystyrene particles affect phagocyte function.
    Prietl B; Meindl C; Roblegg E; Pieber TR; Lanzer G; Fröhlich E
    Cell Biol Toxicol; 2014 Feb; 30(1):1-16. PubMed ID: 24292270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells.
    Ruenraroengsak P; Tetley TD
    Part Fibre Toxicol; 2015 Jul; 12():19. PubMed ID: 26133975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages.
    Deville S; Honrath B; Tran QTD; Fejer G; Lambrichts I; Nelissen I; Dolga AM; Salvati A
    Arch Toxicol; 2020 Jan; 94(1):173-186. PubMed ID: 31677074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles.
    Ruenraroengsak P; Novak P; Berhanu D; Thorley AJ; Valsami-Jones E; Gorelik J; Korchev YE; Tetley TD
    Nanotoxicology; 2012 Feb; 6(1):94-108. PubMed ID: 21352086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing.
    Fröhlich E; Meindl C; Roblegg E; Griesbacher A; Pieber TR
    Nanotoxicology; 2012 Jun; 6(4):424-39. PubMed ID: 21627401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.
    Mrakovcic M; Absenger M; Riedl R; Smole C; Roblegg E; Fröhlich LF; Fröhlich E
    PLoS One; 2013; 8(2):e56791. PubMed ID: 23457616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line.
    Sharma A; Gorey B; Casey A
    Drug Chem Toxicol; 2019 Jan; 42(1):9-23. PubMed ID: 29359584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells.
    Horie M; Nishio K; Endoh S; Kato H; Fujita K; Miyauchi A; Nakamura A; Kinugasa S; Yamamoto K; Niki E; Yoshida Y; Iwahashi H
    Environ Toxicol; 2013 Feb; 28(2):61-75. PubMed ID: 21384495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model.
    Thubagere A; Reinhard BM
    ACS Nano; 2010 Jul; 4(7):3611-22. PubMed ID: 20560658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative particle-induced cytotoxicity toward macrophages and fibroblasts.
    Olivier V; Duval JL; Hindié M; Pouletaut P; Nagel MD
    Cell Biol Toxicol; 2003 Jun; 19(3):145-59. PubMed ID: 12945743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles.
    Maher MA; Byrne HJ
    Anal Bioanal Chem; 2016 Jul; 408(19):5295-307. PubMed ID: 27209595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions.
    Napierska D; Rabolli V; Thomassen LC; Dinsdale D; Princen C; Gonzalez L; Poels KL; Kirsch-Volders M; Lison D; Martens JA; Hoet PH
    Chem Res Toxicol; 2012 Apr; 25(4):828-37. PubMed ID: 22263782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose.
    Brandenberger C; Rothen-Rutishauser B; Blank F; Gehr P; Mühlfeld C
    Respir Res; 2009 Mar; 10(1):22. PubMed ID: 19284624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.