BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19652459)

  • 41. Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
    Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V
    Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition.
    Yang H; Liu C; Yang D; Zhang H; Xi Z
    J Appl Toxicol; 2009 Jan; 29(1):69-78. PubMed ID: 18756589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.
    Brown DM; Wilson MR; MacNee W; Stone V; Donaldson K
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):191-9. PubMed ID: 11559017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines.
    Rubio L; Barguilla I; Domenech J; Marcos R; Hernández A
    J Hazard Mater; 2020 Nov; 398():122900. PubMed ID: 32464564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles.
    Latvala S; Hedberg J; Di Bucchianico S; Möller L; Odnevall Wallinder I; Elihn K; Karlsson HL
    PLoS One; 2016; 11(7):e0159684. PubMed ID: 27434640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells.
    Genç H; Barutca B; Koparal AT; Özöğüt U; Şahin Y; Suvacı E
    Toxicol In Vitro; 2018 Mar; 47():238-248. PubMed ID: 29223573
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective stimulation of the JAK/STAT signaling pathway by silica nanoparticles in human endothelial cells.
    Siegrist S; Kettiger H; Fasler-Kan E; Huwyler J
    Toxicol In Vitro; 2017 Aug; 42():308-318. PubMed ID: 28476499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A(549).
    Patil G; Khan MI; Patel DK; Sultana S; Prasad R; Ahmad I
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):436-445. PubMed ID: 22785077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
    Karlsson HL; Cronholm P; Gustafsson J; Möller L
    Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-oxidative effects and harmlessness of asymmetric Au@Fe₃O₄ Janus particles on human blood cells.
    Landgraf L; Ernst P; Schick I; Köhler O; Oehring H; Tremel W; Hilger I
    Biomaterials; 2014 Aug; 35(25):6986-97. PubMed ID: 24856108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells.
    Lee JH; Ju JE; Kim BI; Pak PJ; Choi EK; Lee HS; Chung N
    Environ Toxicol Chem; 2014 Dec; 33(12):2759-66. PubMed ID: 25176020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative safety evaluation of silica-based particles.
    Kettiger H; Sen Karaman D; Schiesser L; Rosenholm JM; Huwyler J
    Toxicol In Vitro; 2015 Dec; 30(1 Pt B):355-63. PubMed ID: 26434530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lineage-related and particle size-dependent cytotoxicity of chitosan nanoparticles on mouse bone marrow-derived hematopoietic stem and progenitor cells.
    Omar Zaki SS; Katas H; Hamid ZA
    Food Chem Toxicol; 2015 Nov; 85():31-44. PubMed ID: 26051352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles.
    Anguissola S; Garry D; Salvati A; O'Brien PJ; Dawson KA
    PLoS One; 2014; 9(9):e108025. PubMed ID: 25238162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells.
    Periasamy VS; Athinarayanan J; Al-Hadi AM; Juhaimi FA; Mahmoud MH; Alshatwi AA
    Environ Toxicol Pharmacol; 2015 Jan; 39(1):176-86. PubMed ID: 25528408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.
    Lankoff A; Arabski M; Wegierek-Ciuk A; Kruszewski M; Lisowska H; Banasik-Nowak A; Rozga-Wijas K; Wojewodzka M; Slomkowski S
    Nanotoxicology; 2013 May; 7(3):235-50. PubMed ID: 22264124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro.
    Peters K; Unger RE; Gatti AM; Sabbioni E; Tsaryk R; Kirkpatrick CJ
    Int J Immunopathol Pharmacol; 2007; 20(4):685-95. PubMed ID: 18179741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nano copper induced apoptosis in podocytes via increasing oxidative stress.
    Xu P; Xu J; Liu S; Yang Z
    J Hazard Mater; 2012 Nov; 241-242():279-86. PubMed ID: 23063557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells.
    Miethling-Graff R; Rumpker R; Richter M; Verano-Braga T; Kjeldsen F; Brewer J; Hoyland J; Rubahn HG; Erdmann H
    Toxicol In Vitro; 2014 Oct; 28(7):1280-9. PubMed ID: 24997297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.