BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 19652511)

  • 41. Mesocosm-scale evaluation of faunal and microbial communities of aerated and unaerated leachfield soil.
    Amador JA; Potts DA; Savin MC; Tomlinson P; Görres JH; Nicosia EL
    J Environ Qual; 2006; 35(4):1160-9. PubMed ID: 16738402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil.
    Brito EM; Guyoneaud R; Goñi-Urriza M; Ranchou-Peyruse A; Verbaere A; Crapez MA; Wasserman JC; Duran R
    Res Microbiol; 2006 Oct; 157(8):752-62. PubMed ID: 16815684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of naphthalene on microbial community composition in the Delaware estuary.
    Castle DM; Montgomery MT; Kirchman DL
    FEMS Microbiol Ecol; 2006 Apr; 56(1):55-63. PubMed ID: 16542405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil.
    Colores GM; Macur RE; Ward DM; Inskeep WP
    Appl Environ Microbiol; 2000 Jul; 66(7):2959-64. PubMed ID: 10877792
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: survival and regrowth.
    Jung H; Ahn Y; Choi H; Kim IS
    Chemosphere; 2005 Nov; 61(7):923-32. PubMed ID: 16257315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Replicability of dominant bacterial populations after long-term surfactant-enrichment in lab-scale activated sludge.
    Lozada M; Figuerola EL; Itria RF; Erijman L
    Environ Microbiol; 2006 Apr; 8(4):625-38. PubMed ID: 16584474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of crude oil on changes of bacterial communities in Arctic sea-ice.
    Gerdes B; Brinkmeyer R; Dieckmann G; Helmke E
    FEMS Microbiol Ecol; 2005 Jun; 53(1):129-39. PubMed ID: 16329935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Short-term dynamics of bacterial communities in a tidally affected coastal ecosystem.
    Rink B; Martens T; Fischer D; Lemke A; Grossart HP; Simon M; Brinkhoff T
    FEMS Microbiol Ecol; 2008 Nov; 66(2):306-19. PubMed ID: 18811653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity.
    Federici E; Leonardi V; Giubilei MA; Quaratino D; Spaccapelo R; D'Annibale A; Petruccioli M
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):203-11. PubMed ID: 17823794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of marine isoprene-degrading communities.
    Alvarez LA; Exton DA; Timmis KN; Suggett DJ; McGenity TJ
    Environ Microbiol; 2009 Dec; 11(12):3280-91. PubMed ID: 19807779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR.
    Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO
    J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metagenomic Analysis of Soil Bacterial Community and Level of Genes Responsible for Biodegradation of Aromatic Hydrocarbons.
    Czarny J; Staninska-Pięta J; Powierska-Czarny J; Nowak J; Wolko Ł; Piotrowska-Cyplik A
    Pol J Microbiol; 2017 Sep; 66(3):345-352. PubMed ID: 29319531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage.
    Röling WF; Ortega-Lucach S; Larter SR; Head IM
    J Appl Microbiol; 2006 Aug; 101(2):290-9. PubMed ID: 16882136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil.
    Militon C; Boucher D; Vachelard C; Perchet G; Barra V; Troquet J; Peyretaillade E; Peyret P
    FEMS Microbiol Ecol; 2010 Dec; 74(3):669-81. PubMed ID: 21044099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils.
    Akbar S; Sultan S; Kertesz M
    J Basic Microbiol; 2015 Jul; 55(7):819-29. PubMed ID: 25656248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.
    Hao da C; Ge GB; Yang L
    FEMS Microbiol Lett; 2008 Jul; 284(2):204-12. PubMed ID: 18576948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.
    Long RM; Lappin-Scott HM; Stevens JR
    Biodegradation; 2009 Jul; 20(4):521-31. PubMed ID: 19132328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.