These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 19653020)
1. L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation. Wang P; Li J; Wang L; Tang ML; Yu ZL; Zheng ZM J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1363-8. PubMed ID: 19653020 [TBL] [Abstract][Full Text] [Related]
2. Lactic acid production from xylose by the fungus Rhizopus oryzae. Maas RH; Bakker RR; Eggink G; Weusthuis RA Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511 [TBL] [Abstract][Full Text] [Related]
3. Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. Guo Y; Yan Q; Jiang Z; Teng C; Wang X J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1137-43. PubMed ID: 20556475 [TBL] [Abstract][Full Text] [Related]
4. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L+-lactic acid production. Maas RH; Springer J; Eggink G; Weusthuis RA J Ind Microbiol Biotechnol; 2008 Jun; 35(6):569-78. PubMed ID: 18247072 [TBL] [Abstract][Full Text] [Related]
5. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae. Zheng Y; Wang Y; Zhang J; Pan J Bioresour Technol; 2016 Oct; 218():344-50. PubMed ID: 27376833 [TBL] [Abstract][Full Text] [Related]
6. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Park EY; Anh PN; Okuda N Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724 [TBL] [Abstract][Full Text] [Related]
7. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Saito K; Hasa Y; Abe H J Biosci Bioeng; 2012 Aug; 114(2):166-9. PubMed ID: 22578599 [TBL] [Abstract][Full Text] [Related]
8. [L-lactic acid fermentation by immobilized Rhizopus oryzae in a three-phase fluidized-bed]. Chen Y; Xia L; Cen P Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):415-9. PubMed ID: 12548964 [TBL] [Abstract][Full Text] [Related]
9. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Zhang L; Li X; Yong Q; Yang ST; Ouyang J; Yu S Bioresour Technol; 2016 Mar; 203():173-80. PubMed ID: 26724548 [TBL] [Abstract][Full Text] [Related]
10. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Bai DM; Li SZ; Liu ZL; Cui ZF Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989 [TBL] [Abstract][Full Text] [Related]
11. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273 [TBL] [Abstract][Full Text] [Related]
12. [Effect of ZnSO4 on L-lactic acid production by Rhizopus oryzae]. Ge C; Pan R; Zhang J; Cai J; Yu Z Wei Sheng Wu Xue Bao; 2013 May; 53(5):515-20. PubMed ID: 23957157 [TBL] [Abstract][Full Text] [Related]
13. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. Wu X; Jiang S; Liu M; Pan L; Zheng Z; Luo S J Ind Microbiol Biotechnol; 2011 Apr; 38(4):565-71. PubMed ID: 20824489 [TBL] [Abstract][Full Text] [Related]
14. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A; Yang ST Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781 [TBL] [Abstract][Full Text] [Related]
15. [Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae]. Jiang S; Zheng Z; Zhu Y; Wu X; Pan L; Luo S; Du W Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1729-33. PubMed ID: 19149184 [TBL] [Abstract][Full Text] [Related]
16. Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. Yamane T; Tanaka R J Biosci Bioeng; 2013 Jan; 115(1):90-5. PubMed ID: 22938823 [TBL] [Abstract][Full Text] [Related]
17. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Thitiprasert S; Sooksai S; Thongchul N Appl Biochem Biotechnol; 2011 Aug; 164(8):1305-22. PubMed ID: 21416338 [TBL] [Abstract][Full Text] [Related]
18. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. Fu Y; Sun X; Zhu H; Jiang R; Luo X; Yin L World J Microbiol Biotechnol; 2018 May; 34(6):74. PubMed ID: 29786118 [TBL] [Abstract][Full Text] [Related]
19. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
20. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. Liu Y; Liao W; Chen S J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]