These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 19653080)

  • 1. Performance in population models for count data, part I: maximum likelihood approximations.
    Plan EL; Maloney A; Trocóniz IF; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2009 Aug; 36(4):353-66. PubMed ID: 19653080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance in population models for count data, part II: a new SAEM algorithm.
    Savic R; Lavielle M
    J Pharmacokinet Pharmacodyn; 2009 Aug; 36(4):367-79. PubMed ID: 19680795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling overdispersion and Markovian features in count data.
    Trocóniz IF; Plan EL; Miller R; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2009 Oct; 36(5):461-77. PubMed ID: 19798550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution.
    Joe H; Zhu R
    Biom J; 2005 Apr; 47(2):219-29. PubMed ID: 16389919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
    Hougaard P; Lee ML; Whitmore GA
    Biometrics; 1997 Dec; 53(4):1225-38. PubMed ID: 9423246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical models for autocorrelated count data.
    Nelson KP; Leroux BG
    Stat Med; 2006 Apr; 25(8):1413-30. PubMed ID: 16196078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED.
    Jönsson S; Kjellsson MC; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2004 Aug; 31(4):299-320. PubMed ID: 15563005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of analytical methods for overdispersed counts in cluster randomized trials: sample size, degree of clustering and imbalance.
    Durán Pacheco G; Hattendorf J; Colford JM; Mäusezahl D; Smith T
    Stat Med; 2009 Oct; 28(24):2989-3011. PubMed ID: 19672840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study.
    Roosa K; Luo R; Chowell G
    Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling.
    Payne EH; Hardin JW; Egede LE; Ramakrishnan V; Selassie A; Gebregziabher M
    Stat Methods Med Res; 2017 Aug; 26(4):1802-1823. PubMed ID: 26031359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects.
    Pradhan S; Song B; Lee J; Chae JW; Kim KI; Back HM; Han N; Kwon KI; Yun HY
    BMC Med Res Methodol; 2017 Dec; 17(1):154. PubMed ID: 29191177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of mixture modeling with count data using NONMEM.
    Frame B; Miller R; Lalonde RL
    J Pharmacokinet Pharmacodyn; 2003 Jun; 30(3):167-83. PubMed ID: 14571690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data.
    Baghfalaki T; Ganjali M
    Stat Methods Med Res; 2021 Jun; 30(6):1484-1501. PubMed ID: 33872092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-effects beta regression for modeling continuous bounded outcome scores using NONMEM when data are not on the boundaries.
    Xu XS; Samtani MN; Dunne A; Nandy P; Vermeulen A; De Ridder F;
    J Pharmacokinet Pharmacodyn; 2013 Aug; 40(4):537-44. PubMed ID: 23645382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation.
    Li H
    Behav Res Methods; 2024 Oct; 56(7):7963-7984. PubMed ID: 38987450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of statistical methods for modeling count data with an application to hospital length of stay.
    Fernandez GA; Vatcheva KP
    BMC Med Res Methodol; 2022 Aug; 22(1):211. PubMed ID: 35927612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the nonparametric estimation method in NONMEM VI.
    Savic RM; Kjellsson MC; Karlsson MO
    Eur J Pharm Sci; 2009 Apr; 37(1):27-35. PubMed ID: 19159684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.