These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 19653306)

  • 1. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications.
    Drynda A; Hassel T; Hoehn R; Perz A; Bach FW; Peuster M
    J Biomed Mater Res A; 2010 May; 93(2):763-75. PubMed ID: 19653306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.
    Drynda A; Seibt J; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res A; 2013 Jan; 101(1):33-43. PubMed ID: 22767427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process.
    Wang HX; Guan SK; Wang X; Ren CX; Wang LG
    Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.
    Trinidad J; Arruebarrena G; Marco I; Hurtado I; Sáenz de Argandoña E
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1301-11. PubMed ID: 24048076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo degradation and mechanical properties of ZEK100 magnesium alloy coated with alginate, chitosan and mechano-growth factor.
    Gao H; Zhang M; Zhao J; Gao L; Li M
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():450-61. PubMed ID: 27040239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy.
    Gu XN; Li N; Zhou WR; Zheng YF; Zhao X; Cai QZ; Ruan L
    Acta Biomater; 2011 Apr; 7(4):1880-9. PubMed ID: 21145440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.
    Shadanbaz S; Dias GJ
    Acta Biomater; 2012 Jan; 8(1):20-30. PubMed ID: 22040686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.
    Kannan MB; Orr L
    Biomed Mater; 2011 Aug; 6(4):045003. PubMed ID: 21636886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes.
    Drynda A; Deinet N; Braun N; Peuster M
    J Biomed Mater Res A; 2009 Nov; 91(2):360-9. PubMed ID: 18980223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation.
    Zhang BP; Qiu H; Wang DW; Liu YQ; Bi ZG
    J Biomed Mater Res A; 2011 Nov; 99(2):166-72. PubMed ID: 21976441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biocompatibility of silicon containing micro-arc oxidation coated magnesium alloy ZK60 with osteoblasts cultured in vitro].
    Yang X; Yin Q; Zhang Y; Li M; Lan G; Lin X; Tan L; Yang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):612-8. PubMed ID: 23879103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo corrosion and corrosion protection of magnesium alloy LAE442.
    Witte F; Fischer J; Nellesen J; Vogt C; Vogt J; Donath T; Beckmann F
    Acta Biomater; 2010 May; 6(5):1792-9. PubMed ID: 19822226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model.
    Yang JX; Cui FZ; Lee IS; Zhang Y; Yin QS; Xia H; Yang SX
    J Biomater Appl; 2012 Aug; 27(2):153-64. PubMed ID: 21363872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31.
    Gray-Munro JE; Strong M
    J Biomed Mater Res A; 2009 Aug; 90(2):339-50. PubMed ID: 18508354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of degradable Mg-Ca alloys on dendritic cell function.
    Feser K; Kietzmann M; Bäumer W; Krause C; Bach FW
    J Biomater Appl; 2011 Mar; 25(7):685-97. PubMed ID: 20207778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.