These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19653487)

  • 1. Using computational cognitive modeling to predict dual-task performance with sleep deprivation.
    Gunzelmann G; Byrne MD; Gluck KA; Moore LR
    Hum Factors; 2009 Apr; 51(2):251-60. PubMed ID: 19653487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational cognitive modeling of the temporal dynamics of fatigue from sleep loss.
    Walsh MM; Gunzelmann G; Van Dongen HPA
    Psychon Bull Rev; 2017 Dec; 24(6):1785-1807. PubMed ID: 28210999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting individual differences in response to sleep loss: application of current techniques.
    Chandler JF; Arnold RD; Phillips JB; Turnmire AE
    Aviat Space Environ Med; 2013 Sep; 84(9):927-37. PubMed ID: 24024304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of biomathematical model predictions for cognitive performance impairment in individuals: accounting for unknown traits and uncertain states in homeostatic and circadian processes.
    Van Dongen HP; Mott CG; Huang JK; Mollicone DJ; McKenzie FD; Dinges DF
    Sleep; 2007 Sep; 30(9):1129-43. PubMed ID: 17910385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep deprivation and sustained attention performance: integrating mathematical and cognitive modeling.
    Gunzelmann G; Gross JB; Gluck KA; Dinges DF
    Cogn Sci; 2009 Jul; 33(5):880-910. PubMed ID: 21585489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Modeling of the Effects of Sleep Deprivation on the Vigilance Decrement.
    Patterson RE; Lochtefeld D; Larson KG; Christensen-Salem A
    Hum Factors; 2019 Nov; 61(7):1099-1111. PubMed ID: 30908091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cognitive impairment and accident risk.
    Raslear TG; Hursh SR; Van Dongen HP
    Prog Brain Res; 2011; 190():155-67. PubMed ID: 21531251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research requirements for operational decision-making using models of fatigue and performance.
    Friedl KE; Mallis MM; Ahlers ST; Popkin SM; Larkin W
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A192-9. PubMed ID: 15018284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pilot Study Exploring the Effects of Sleep Deprivation on Analogue Measures of Pilot Competencies.
    O'Hagan AD; Issartel J; McGinley E; Warrington G
    Aerosp Med Hum Perform; 2018 Jul; 89(7):609-615. PubMed ID: 29921352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual differences in cognitive vulnerability to fatigue in the laboratory and in the workplace.
    Van Dongen HP; Caldwell JA; Caldwell JL
    Prog Brain Res; 2011; 190():145-53. PubMed ID: 21531250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of mathematical model predictions to experimental data of fatigue and performance.
    Van Dongen HP
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A15-36. PubMed ID: 15018263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of sleep deprivation in military surgical teams: a systematic review.
    Parker RS; Parker P
    J R Army Med Corps; 2017 Jun; 163(3):158-163. PubMed ID: 27625370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques.
    Van Dongen HP; Maislin G; Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A147-54. PubMed ID: 15018277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep.
    Boyle J; Stanley N; James LM; Wright N; Johnsen S; Arbon EL; Dijk DJ
    J Psychopharmacol; 2012 Aug; 26(8):1047-57. PubMed ID: 21940760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomathematical modeling of fatigue due to sleep inertia.
    McCauley ME; McCauley P; Kalachev LV; Riedy SM; Banks S; Ecker AJ; Dinges DF; Van Dongen HPA
    J Theor Biol; 2024 Aug; 590():111851. PubMed ID: 38782198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling performance and alertness: the QinetiQ approach.
    Belyavin AJ; Spencer MB
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A93-103; discussion 104-6. PubMed ID: 15018270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Summary of the key features of seven biomathematical models of human fatigue and performance.
    Mallis MM; Mejdal S; Nguyen TT; Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A4-14. PubMed ID: 15018262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.
    Fulcher BD; Phillips AJ; Robinson PA
    J Theor Biol; 2010 May; 264(2):407-19. PubMed ID: 20176034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue models for applied research in warfighting.
    Hursh SR; Redmond DP; Johnson ML; Thorne DR; Belenky G; Balkin TJ; Storm WF; Miller JC; Eddy DR
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A44-53; discussion A54-60. PubMed ID: 15018265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.