These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19653639)

  • 1. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP.
    Muthuswamy E; Kharel PR; Lawes G; Brock SL
    ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures.
    Ye E; Zhang SY; Lim SH; Bosman M; Zhang Z; Win KY; Han MY
    Chemistry; 2011 May; 17(21):5982-8. PubMed ID: 21491516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires.
    Qian C; Kim F; Ma L; Tsui F; Yang P; Liu J
    J Am Chem Soc; 2004 Feb; 126(4):1195-8. PubMed ID: 14746490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of hollow Ni2p nanoparticles based on the nanoscale Kirkendall effect.
    Chiang RK; Chiang RT
    Inorg Chem; 2007 Jan; 46(2):369-71. PubMed ID: 17279811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.
    Muthuswamy E; Brock SL
    J Am Chem Soc; 2010 Nov; 132(45):15849-51. PubMed ID: 20964294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles.
    Sun S; Zeng H; Robinson DB; Raoux S; Rice PM; Wang SX; Li G
    J Am Chem Soc; 2004 Jan; 126(1):273-9. PubMed ID: 14709092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically synthesized hollow nanostructures in iron oxides.
    Khurshid H; Li W; Tzitzios V; Hadjipanayis GC
    Nanotechnology; 2011 Jul; 22(26):265605. PubMed ID: 21576787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-selective chemical extraction of selenium and sulfur from nanoscale metal chalcogenides: a general strategy for synthesis, purification, and phase targeting.
    Sines IT; Schaak RE
    J Am Chem Soc; 2011 Feb; 133(5):1294-7. PubMed ID: 21192687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and magnetic properties of nearly monodisperse CuCr2Se4 nanoparticles.
    Lin CR; Yeh CL; Lu SZ; Lyubutin IS; Wang SC; Suzdalev IP
    Nanotechnology; 2010 Jun; 21(23):235603. PubMed ID: 20463392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions.
    Yao Y; Mahmood N; Pan L; Shen G; Zhang R; Gao R; Aleem FE; Yuan X; Zhang X; Zou JJ
    Nanoscale; 2018 Dec; 10(45):21327-21334. PubMed ID: 30422136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transmission electron microscopy study of Fe-Co alloy nanoparticles in silica aerogel matrix using HREM, EDX, and EELS.
    Falqui A; Corrias A; Gass M; Mountjoy G
    Microsc Microanal; 2009 Apr; 15(2):114-24. PubMed ID: 19284893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion.
    Nica V; Sauer HM; Embs J; Hempelmann R
    J Phys Condens Matter; 2008 May; 20(20):204115. PubMed ID: 21694244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic properties of lanthanide chalcogenide semiconducting nanoparticles.
    Regulacio MD; Bussmann K; Lewis B; Stoll SL
    J Am Chem Soc; 2006 Aug; 128(34):11173-9. PubMed ID: 16925435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles.
    Shukla N; Nigra MM; Nuhfer T; Bartel MA; Gellman AJ
    Nanotechnology; 2009 Feb; 20(6):065602. PubMed ID: 19417390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles.
    Lien YH; Wu TM
    J Colloid Interface Sci; 2008 Oct; 326(2):517-21. PubMed ID: 18667211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation.
    Li W; Huang H; Li H; Zhang W; Liu H
    Langmuir; 2008 Aug; 24(15):8358-66. PubMed ID: 18582130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.