These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Kemmink J; Darby NJ; Dijkstra K; Nilges M; Creighton TE Curr Biol; 1997 Apr; 7(4):239-45. PubMed ID: 9094311 [TBL] [Abstract][Full Text] [Related]
23. The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin. Schultz LW; Chivers PT; Raines RT Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1533-8. PubMed ID: 10489448 [TBL] [Abstract][Full Text] [Related]
24. Yeast Mpd1p reveals the structural diversity of the protein disulfide isomerase family. Vitu E; Gross E; Greenblatt HM; Sevier CS; Kaiser CA; Fass D J Mol Biol; 2008 Dec; 384(3):631-40. PubMed ID: 18845159 [TBL] [Abstract][Full Text] [Related]
25. Structural and mechanistic insights into unusual thiol disulfide oxidoreductase. Garcin EB; Bornet O; Elantak L; Vita N; Pieulle L; Guerlesquin F; Sebban-Kreuzer C J Biol Chem; 2012 Jan; 287(3):1688-97. PubMed ID: 22128175 [TBL] [Abstract][Full Text] [Related]
26. ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif. Ferrari DM; Nguyen Van P; Kratzin HD; Söling HD Eur J Biochem; 1998 Aug; 255(3):570-9. PubMed ID: 9738895 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. McCarthy AA; Haebel PW; Törrönen A; Rybin V; Baker EN; Metcalf P Nat Struct Biol; 2000 Mar; 7(3):196-9. PubMed ID: 10700276 [TBL] [Abstract][Full Text] [Related]
28. Functional metagenomics of the thioredoxin superfamily. Nilewski S; Varatnitskaya M; Masuch T; Kusnezowa A; Gellert M; Baumann AF; Lupilov N; Kusnezow W; Koch MH; Eisenacher M; Berkmen M; Lillig CH; Leichert LI J Biol Chem; 2021; 296():100247. PubMed ID: 33361108 [TBL] [Abstract][Full Text] [Related]
29. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores. Liu Y; Carlsson Möller M; Petersen L; Söderberg CA; Hederstedt L Mol Microbiol; 2010 Jan; 75(1):46-60. PubMed ID: 19919673 [TBL] [Abstract][Full Text] [Related]
30. Redox-active cyclic bis(cysteinyl)peptides as catalysts for in vitro oxidative protein folding. Cabrele C; Fiori S; Pegoraro S; Moroder L Chem Biol; 2002 Jun; 9(6):731-40. PubMed ID: 12079785 [TBL] [Abstract][Full Text] [Related]
31. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Tian G; Xiang S; Noiva R; Lennarz WJ; Schindelin H Cell; 2006 Jan; 124(1):61-73. PubMed ID: 16413482 [TBL] [Abstract][Full Text] [Related]
32. Structure of the catalytic a(0)a fragment of the protein disulfide isomerase ERp72. Kozlov G; Azeroual S; Rosenauer A; Määttänen P; Denisov AY; Thomas DY; Gehring K J Mol Biol; 2010 Aug; 401(4):618-25. PubMed ID: 20600112 [TBL] [Abstract][Full Text] [Related]
33. Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Nørgaard P; Winther JR Biochem J; 2001 Aug; 358(Pt 1):269-74. PubMed ID: 11485577 [TBL] [Abstract][Full Text] [Related]
34. Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Pedone E; Limauro D; D'Ambrosio K; De Simone G; Bartolucci S Cell Mol Life Sci; 2010 Nov; 67(22):3797-814. PubMed ID: 20625793 [TBL] [Abstract][Full Text] [Related]
35. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. Dawson A; Chen M; Fyfe PK; Guo Z; Hunter WN J Mol Biol; 2010 Aug; 401(2):253-64. PubMed ID: 20600129 [TBL] [Abstract][Full Text] [Related]
36. Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. Miranda-Vizuete A; Damdimopoulos AE; Gustafsson J; Spyrou G J Biol Chem; 1997 Dec; 272(49):30841-7. PubMed ID: 9388228 [TBL] [Abstract][Full Text] [Related]
37. Zinc-dependent dimerization of the folding catalyst, protein disulfide isomerase. Solovyov A; Gilbert HF Protein Sci; 2004 Jul; 13(7):1902-7. PubMed ID: 15169950 [TBL] [Abstract][Full Text] [Related]
38. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668 [TBL] [Abstract][Full Text] [Related]
39. The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation. Carius Y; Rother D; Friedrich CG; Scheidig AJ Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):229-40. PubMed ID: 19237745 [TBL] [Abstract][Full Text] [Related]
40. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Lundström J; Holmgren A Biochemistry; 1993 Jul; 32(26):6649-55. PubMed ID: 8329391 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]