These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19653680)

  • 1. Breathing motions of a respiratory protein revealed by molecular dynamics simulations.
    Scorciapino MA; Robertazzi A; Casu M; Ruggerone P; Ceccarelli M
    J Am Chem Soc; 2009 Aug; 131(33):11825-32. PubMed ID: 19653680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand pathways in myoglobin: a review of Trp cavity mutations.
    Olson JS; Soman J; Phillips GN
    IUBMB Life; 2007; 59(8-9):552-62. PubMed ID: 17701550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of proximal His93 in nitric oxide binding to metmyoglobin. Application of continuum solvation in Monte Carlo protein simulations.
    Keserü GM; Menyhárd DK
    Biochemistry; 1999 May; 38(20):6614-22. PubMed ID: 10350480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of protein internal cavities on ligand migration and binding in myoglobin.
    Nienhaus K; Nienhaus GU
    Micron; 2004; 35(1-2):67-9. PubMed ID: 15036294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach.
    Martínez L; Polikarpov I; Skaf MS
    J Phys Chem B; 2008 Aug; 112(34):10741-51. PubMed ID: 18681473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme proteins: the role of solvent in the dynamics of gates and portals.
    Scorciapino MA; Robertazzi A; Casu M; Ruggerone P; Ceccarelli M
    J Am Chem Soc; 2010 Apr; 132(14):5156-63. PubMed ID: 20095556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward quantitative simulations of carbon monoxide escape pathways in myoglobin.
    Elber R; Gibson QH
    J Phys Chem B; 2008 May; 112(19):6147-54. PubMed ID: 18205346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin.
    Bossa C; Anselmi M; Roccatano D; Amadei A; Vallone B; Brunori M; Di Nola A
    Biophys J; 2004 Jun; 86(6):3855-62. PubMed ID: 15189882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of peripheral trifluoromethyl groups in artificial iron porphycene cofactor on ligand binding properties of myoglobin.
    Matsuo T; Ito K; Nakashima Y; Hisaeda Y; Hayashi T
    J Inorg Biochem; 2008 Feb; 102(2):166-73. PubMed ID: 17845820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand migration and escape pathways in haem proteins.
    Lavalette D; Tétreau C; Mouawad L
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):975-8. PubMed ID: 17052240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction at a distance: Xenon migration in Mb.
    Turan HT; Boittier E; Meuwly M
    J Chem Phys; 2023 Mar; 158(12):125103. PubMed ID: 37003761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity principle of the ligand escape process from a two-gate tunnel in myoglobin: molecular dynamics simulation.
    Sheu SY
    J Chem Phys; 2006 Apr; 124(15):154711. PubMed ID: 16674255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO escape from myoglobin with metadynamics simulations.
    Ceccarelli M; Anedda R; Casu M; Ruggerone P
    Proteins; 2008 May; 71(3):1231-6. PubMed ID: 18041761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles for holes: are cavities in proteins mere packing defects?
    Vallone B; Brunori M
    Ital J Biochem; 2004 Mar; 53(1):46-52. PubMed ID: 15356962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors.
    Shen J; Li W; Liu G; Tang Y; Jiang H
    J Phys Chem B; 2009 Jul; 113(30):10436-44. PubMed ID: 19583238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin.
    Tomita A; Sato T; Ichiyanagi K; Nozawa S; Ichikawa H; Chollet M; Kawai F; Park SY; Tsuduki T; Yamato T; Koshihara SY; Adachi S
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2612-6. PubMed ID: 19204297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the conjugate peak refinement algorithm for identification of ligand-binding pathways in globins.
    Golden SD; Olsen KW
    Methods Enzymol; 2008; 437():417-37. PubMed ID: 18433640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A.
    Tilton RF; Kuntz ID; Petsko GA
    Biochemistry; 1984 Jun; 23(13):2849-57. PubMed ID: 6466620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.
    Desdouits N; Nilges M; Blondel A
    J Mol Graph Model; 2015 Feb; 55():13-24. PubMed ID: 25424655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient mapping of ligand migration channel networks in dynamic proteins.
    Lin TL; Song G
    Proteins; 2011 Aug; 79(8):2475-90. PubMed ID: 21638334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.