BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19653693)

  • 1. Structural flexibility enhances the reactivity of the bioremediator glycerophosphodiesterase by fine-tuning its mechanism of hydrolysis.
    Hadler KS; Mitić N; Ely F; Hanson GR; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    J Am Chem Soc; 2009 Aug; 131(33):11900-8. PubMed ID: 19653693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Hadler KS; Mitić N; Yip SH; Gahan LR; Ollis DL; Schenk G; Larrabee JA
    Inorg Chem; 2010 Mar; 49(6):2727-34. PubMed ID: 20163105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Pedroso MM; Ely F; Carpenter MC; Mitić N; Gahan LR; Ollis DL; Wilcox DE; Schenk G
    Biochemistry; 2017 Jul; 56(26):3328-3336. PubMed ID: 28562023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.
    Hadler KS; Gahan LR; Ollis DL; Schenk G
    J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes.
    Hadler KS; Tanifum EA; Yip SH; Mitić N; Guddat LW; Jackson CJ; Gahan LR; Nguyen K; Carr PD; Ollis DL; Hengge AC; Larrabee JA; Schenk G
    J Am Chem Soc; 2008 Oct; 130(43):14129-38. PubMed ID: 18831553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes.
    Jackson CJ; Carr PD; Liu JW; Watt SJ; Beck JL; Ollis DL
    J Mol Biol; 2007 Apr; 367(4):1047-62. PubMed ID: 17306828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study.
    Paul TJ; Schenk G; Prabhakar R
    J Phys Chem B; 2018 Jun; 122(22):5797-5808. PubMed ID: 29723477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution combined with rational design increases activity of GpdQ toward a non-physiological substrate and alters the oligomeric structure of the enzyme.
    Yip SH; Foo JL; Schenk G; Gahan LR; Carr PD; Ollis DL
    Protein Eng Des Sel; 2011 Dec; 24(12):861-72. PubMed ID: 21979136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.
    Urscher M; Deponte M
    Biol Chem; 2009 Nov; 390(11):1171-83. PubMed ID: 19663684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway.
    He SM; Wathier M; Podzelinska K; Wong M; McSorley FR; Asfaw A; Hove-Jensen B; Jia Z; Zechel DL
    Biochemistry; 2011 Oct; 50(40):8603-15. PubMed ID: 21830807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes.
    Daumann LJ; Schenk G; Ollis DL; Gahan LR
    Dalton Trans; 2014 Jan; 43(3):910-28. PubMed ID: 24135968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction.
    Xia Z; Azurmendi HF; Lairson LL; Withers SG; Gabelli SB; Bianchet MA; Amzel LM; Mildvan AS
    Biochemistry; 2005 Jun; 44(25):8989-97. PubMed ID: 15966723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference.
    Jackson CJ; Hadler KS; Carr PD; Oakley AJ; Yip S; Schenk G; Ollis DL
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Aug; 64(Pt 8):681-5. PubMed ID: 18678932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium(II) complexes of the glycerophosphodiester-degrading enzyme GpdQ and a biomimetic N,O ligand.
    Mirams RE; Smith SJ; Hadler KS; Ollis DL; Schenk G; Gahan LR
    J Biol Inorg Chem; 2008 Sep; 13(7):1065-72. PubMed ID: 18535849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis.
    Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G
    Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX.
    Ghanem E; Li Y; Xu C; Raushel FM
    Biochemistry; 2007 Aug; 46(31):9032-40. PubMed ID: 17630782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.
    Takebayashi S; Shinkai S; Ikeda M; Takeuchi M
    Org Biomol Chem; 2008 Feb; 6(3):493-9. PubMed ID: 18219419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.