These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 19653696)
21. Sub-proteome differential display: single gel comparison by 2D electrophoresis and mass spectrometry. Spandidos A; Rabbitts TH J Mol Biol; 2002 Apr; 318(1):21-31. PubMed ID: 12054765 [TBL] [Abstract][Full Text] [Related]
22. Proteomics-based strategy to identify biomarkers and pharmacological targets in leukemias with t(4;11) translocations. Yocum AK; Busch CM; Felix CA; Blair IA J Proteome Res; 2006 Oct; 5(10):2743-53. PubMed ID: 17022645 [TBL] [Abstract][Full Text] [Related]
23. Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. Delmotte N; Lasaosa M; Tholey A; Heinzle E; Huber CG J Proteome Res; 2007 Nov; 6(11):4363-73. PubMed ID: 17924683 [TBL] [Abstract][Full Text] [Related]
24. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome. Kim KH; Moon MH J Proteome Res; 2009 Sep; 8(9):4272-8. PubMed ID: 19653698 [TBL] [Abstract][Full Text] [Related]
25. Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Wingren C; James P; Borrebaeck CA Proteomics; 2009 Mar; 9(6):1511-7. PubMed ID: 19235165 [TBL] [Abstract][Full Text] [Related]
26. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression. Xu Y; Liang S; Shen G; Xu X; Liu Q; Xu Z; Gong F; Tang M; Wei Y Biotechnol Appl Biochem; 2009 Jul; 54(1):11-20. PubMed ID: 19250064 [TBL] [Abstract][Full Text] [Related]
27. Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches. Thon JN; Schubert P; Duguay M; Serrano K; Lin S; Kast J; Devine DV Transfusion; 2008 Mar; 48(3):425-35. PubMed ID: 18067510 [TBL] [Abstract][Full Text] [Related]
28. Shotgun proteomic analysis of the microsomal fraction of eukaryotic cells using a two-dimensional reversed-phase x ion-pair reversed-phase HPLC setup. Wörner M; Melchior K; Delmotte N; Hwang KH; Monostory K; Huber CG; Bernhardt R J Sep Sci; 2009 Apr; 32(8):1165-74. PubMed ID: 19301326 [TBL] [Abstract][Full Text] [Related]
29. Trypsin digest coupled with two-dimensional shotgun proteomics reveals the involvement of multiple signaling pathways in functional remodeling of late-gestation uteri in rats. Chen GY; Chen SH; Yu CH; Huang SY; Tsai ML Proteomics; 2008 Aug; 8(15):3173-84. PubMed ID: 18654981 [TBL] [Abstract][Full Text] [Related]
31. Affinity-MS: methods and applications in proteomics research. Joos T Proteomics; 2009 Mar; 9(6):1418-9. PubMed ID: 19294623 [No Abstract] [Full Text] [Related]
32. The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. Vasilescu J; Zweitzig DR; Denis NJ; Smith JC; Ethier M; Haines DS; Figeys D J Proteome Res; 2007 Jan; 6(1):298-305. PubMed ID: 17203973 [TBL] [Abstract][Full Text] [Related]
33. Principles and applications of multidimensional protein identification technology. Paoletti AC; Zybailov B; Washburn MP Expert Rev Proteomics; 2004 Oct; 1(3):275-82. PubMed ID: 15966824 [TBL] [Abstract][Full Text] [Related]
34. Utility of mass spectrometry for proteome analysis: part I. Conceptual and experimental approaches. Ahmed FE Expert Rev Proteomics; 2008 Dec; 5(6):841-64. PubMed ID: 19086863 [TBL] [Abstract][Full Text] [Related]
35. Shotgun proteomics using the iTRAQ isobaric tags. Aggarwal K; Choe LH; Lee KH Brief Funct Genomic Proteomic; 2006 Jun; 5(2):112-20. PubMed ID: 16772272 [TBL] [Abstract][Full Text] [Related]
36. Identification of molecular target of AMP-activated protein kinase activator by affinity purification and mass spectrometry. Kosaka T; Okuyama R; Sun W; Ogata T; Harada J; Araki K; Izumi M; Yoshida T; Okuno A; Fujiwara T; Ohsumi J; Ichikawa K Anal Chem; 2005 Apr; 77(7):2050-5. PubMed ID: 15801737 [TBL] [Abstract][Full Text] [Related]
37. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements. Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187 [TBL] [Abstract][Full Text] [Related]
38. Proteome analysis of Escherichia coli using high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Ihling C; Sinz A Proteomics; 2005 May; 5(8):2029-42. PubMed ID: 15852340 [TBL] [Abstract][Full Text] [Related]
39. A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies. Chamrád I; Rix U; Stukalov A; Gridling M; Parapatics K; Müller AC; Altiok S; Colinge J; Superti-Furga G; Haura EB; Bennett KL J Proteome Res; 2013 Sep; 12(9):4005-17. PubMed ID: 23901793 [TBL] [Abstract][Full Text] [Related]