BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 19654118)

  • 1. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility.
    Parthiban V; Gromiha MM; Hoppe C; Schomburg D
    Proteins; 2007 Jan; 66(1):41-52. PubMed ID: 17068801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.
    Parthiban V; Gromiha MM; Abhinandan M; Schomburg D
    BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.
    Marrero-Ponce Y; Medina-Marrero R; Castillo-Garit JA; Romero-Zaldivar V; Torrens F; Castro EA
    Bioorg Med Chem; 2005 Apr; 13(8):3003-15. PubMed ID: 15781410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence.
    Gilis D; Rooman M
    J Mol Biol; 1997 Sep; 272(2):276-90. PubMed ID: 9299354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations.
    Bordner AJ; Abagyan RA
    Proteins; 2004 Nov; 57(2):400-13. PubMed ID: 15340927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of protein stability predictors.
    Khan S; Vihinen M
    Hum Mutat; 2010 Jun; 31(6):675-84. PubMed ID: 20232415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast accurate evaluation of protein solvent exposure.
    Zhang N; Zeng C; Wingreen NS
    Proteins; 2004 Nov; 57(3):565-76. PubMed ID: 15382246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of distant residue contacts with the use of evolutionary information.
    Vicatos S; Reddy BV; Kaznessis Y
    Proteins; 2005 Mar; 58(4):935-49. PubMed ID: 15645442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations.
    Guerois R; Nielsen JE; Serrano L
    J Mol Biol; 2002 Jul; 320(2):369-87. PubMed ID: 12079393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions.
    Frenz CM
    Proteins; 2005 May; 59(2):147-51. PubMed ID: 15723345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein mutant stability using classification and regression tool.
    Huang LT; Saraboji K; Ho SY; Hwang SF; Ponnuswamy MN; Gromiha MM
    Biophys Chem; 2007 Feb; 125(2-3):462-70. PubMed ID: 17113702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties.
    Dor O; Zhou Y
    Proteins; 2007 Jul; 68(1):76-81. PubMed ID: 17397056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.