BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 19654296)

  • 1. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations.
    Carter H; Chen S; Isik L; Tyekucheva S; Velculescu VE; Kinzler KW; Vogelstein B; Karchin R
    Cancer Res; 2009 Aug; 69(16):6660-7. PubMed ID: 19654296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CanDrA: cancer-specific driver missense mutation annotation with optimized features.
    Mao Y; Chen H; Liang H; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2013; 8(10):e77945. PubMed ID: 24205039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of computational methods for predicting the effects of missense mutations in human cancers.
    Gnad F; Baucom A; Mukhyala K; Manning G; Zhang Z
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S7. PubMed ID: 23819521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Approaches to Prioritize Cancer Driver Missense Mutations.
    Zhao F; Zheng L; Goncearenco A; Panchenko AR; Li M
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive assessment of computational algorithms in predicting cancer driver mutations.
    Chen H; Li J; Wang Y; Ng PK; Tsang YH; Shaw KR; Mills GB; Liang H
    Genome Biol; 2020 Feb; 21(1):43. PubMed ID: 32079540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new disease-specific machine learning approach for the prediction of cancer-causing missense variants.
    Capriotti E; Altman RB
    Genomics; 2011 Oct; 98(4):310-7. PubMed ID: 21763417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of cancer driver mutations in protein kinases.
    Torkamani A; Schork NJ
    Cancer Res; 2008 Mar; 68(6):1675-82. PubMed ID: 18339846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the oncogenicity of missense mutations reported in the International Agency for Cancer Research (IARC) mutation database on p53.
    Gorlov IP; Gorlova OY; Amos CI
    Hum Mutat; 2005 Nov; 26(5):446-54. PubMed ID: 16173033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Pathogenicity Prediction Tools on Somatic Variants.
    Suybeng V; Koeppel F; Harlé A; Rouleau E
    J Mol Diagn; 2020 Dec; 22(12):1383-1392. PubMed ID: 33011441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using passenger mutations to estimate the timing of driver mutations and identify mutator alterations.
    Youn A; Simon R
    BMC Bioinformatics; 2013 Dec; 14():363. PubMed ID: 24330428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annotation of Variant Data from High-Throughput DNA Sequencing from Tumor Specimens: Filtering Strategies to Identify Driver Mutations.
    Sun S; Thorson JA; Murray SS
    Methods Mol Biol; 2019; 1908():49-60. PubMed ID: 30649720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].
    Chen Q; Dai C; Zhang Q; Du J; Li W
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):625-8. PubMed ID: 27577208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing cancer-associated missense mutations from common polymorphisms.
    Kaminker JS; Zhang Y; Waugh A; Haverty PM; Peters B; Sebisanovic D; Stinson J; Forrest WF; Bazan JF; Seshagiri S; Zhang Z
    Cancer Res; 2007 Jan; 67(2):465-73. PubMed ID: 17234753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
    Kunkle B; Yoo C; Roy D
    Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.