BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19654687)

  • 1. Fluctuating nanomechanical system in a high finesse optical microcavity.
    Favero I; Stapfner S; Hunger D; Paulitschke P; Reichel J; Lorenz H; Weig EM; Karrai K
    Opt Express; 2009 Jul; 17(15):12813-20. PubMed ID: 19654687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable optical coupler controlled by optical gradient forces.
    Fong KY; Pernice WH; Li M; Tang HX
    Opt Express; 2011 Aug; 19(16):15098-108. PubMed ID: 21934871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule optical absorption imaging by nanomechanical photothermal sensing.
    Chien MH; Brameshuber M; Rossboth BK; Schütz GJ; Schmid S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11150-11155. PubMed ID: 30254155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractively coupled Fabry-Perot resonator with power-recycling.
    Britzger M; Friedrich D; Kroker S; Brückner F; Burmeister O; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Opt Express; 2011 Aug; 19(16):14964-75. PubMed ID: 21934858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals.
    Zhu H; Chen X; Jin LM; Wang QJ; Wang F; Yu SF
    ACS Nano; 2013 Dec; 7(12):11420-6. PubMed ID: 24266853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser frequency stabilization and control through offset sideband locking to optical cavities.
    Thorpe JI; Numata K; Livas J
    Opt Express; 2008 Sep; 16(20):15980-90. PubMed ID: 18825236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity.
    Locke CR; Stuart D; Ivanov EN; Luiten AN
    Opt Express; 2009 Nov; 17(24):21935-43. PubMed ID: 19997438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator.
    Sánchez Arribas I; Taniguchi T; Watanabe K; Weig EM
    Nano Lett; 2023 Jul; 23(14):6301-6307. PubMed ID: 37460106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical microcavity: sensing down to single molecules and atoms.
    Yoshie T; Tang L; Su SY
    Sensors (Basel); 2011; 11(2):1972-91. PubMed ID: 22319393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry.
    Xia H; Zhang C; Mu H; Sun D
    Appl Opt; 2009 Jan; 48(2):189-97. PubMed ID: 19137028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter.
    Pan S; Yao J
    Opt Express; 2009 Jul; 17(14):12167-73. PubMed ID: 19582131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.
    Kerckhoff J; Mabuchi H
    Opt Express; 2009 Aug; 17(17):14744-60. PubMed ID: 19687952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.
    Tripathi S; Toussaint KC
    Opt Express; 2012 May; 20(10):10788-95. PubMed ID: 22565702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
    Li JJ; Zhu KD
    Nanotechnology; 2010 May; 21(20):205501. PubMed ID: 20413838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phononically shielded photonic-crystal mirror membranes for cavity quantum optomechanics.
    Enzian G; Wang Z; Simonsen A; Mathiassen J; Vibel T; Tsaturyan Y; Tagantsev A; Schliesser A; Polzik ES
    Opt Express; 2023 Apr; 31(8):13040-13052. PubMed ID: 37157450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Looking through the mirror: optical microcavity-mirror image photonic interaction.
    Shi L; Xifré-Pérez E; García de Abajo FJ; Meseguer F
    Opt Express; 2012 May; 20(10):11247-55. PubMed ID: 22565747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale microcavity sensor for single particle detection.
    Lee MR; Fauchet PM
    Opt Lett; 2007 Nov; 32(22):3284-6. PubMed ID: 18026281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithically integrated membrane-in-the-middle cavity optomechanical systems.
    Hornig GJ; Al-Sumaidae S; Maldaner J; Bu L; DeCorby RG
    Opt Express; 2020 Sep; 28(19):28113-28125. PubMed ID: 32988089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.
    He X; Fang X; Liao C; Wang DN; Sun J
    Opt Express; 2009 Nov; 17(24):21773-81. PubMed ID: 19997420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.