These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19654784)

  • 1. Error budget analysis for an adaptive optics optical coherence tomography system.
    Evans JW; Zawadzki RJ; Jones SM; Olivier SS; Werner JS
    Opt Express; 2009 Aug; 17(16):13768-84. PubMed ID: 19654784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
    Wanek JM; Mori M; Shahidi M
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1296-304. PubMed ID: 17429475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive optics retinal scanner for one-micrometer light source.
    Kurokawa K; Tamada D; Makita S; Yasuno Y
    Opt Express; 2010 Jan; 18(2):1406-18. PubMed ID: 20173968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.
    Zawadzki RJ; Cense B; Zhang Y; Choi SS; Miller DT; Werner JS
    Opt Express; 2008 May; 16(11):8126-43. PubMed ID: 18545525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive-optics ultrahigh-resolution optical coherence tomography.
    Hermann B; Fernández EJ; Unterhuber A; Sattmann H; Fercher AF; Drexler W; Prieto PM; Artal P
    Opt Lett; 2004 Sep; 29(18):2142-4. PubMed ID: 15460883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system.
    Zou W; Qi X; Burns SA
    Opt Lett; 2008 Nov; 33(22):2602-4. PubMed ID: 19015681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.
    Yin B; Dwelle J; Wang B; Wang T; Feldman MD; Rylander HG; Milner TE
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):2169-77. PubMed ID: 26560931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.
    Kumar A; Drexler W; Leitgeb RA
    Opt Express; 2013 May; 21(9):10850-66. PubMed ID: 23669942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral resolution enhancement using programmable phase modulator in optical coherence tomography.
    Shirazi MF; Cho NH; Jung W; Kim J
    Biomed Mater Eng; 2015; 26 Suppl 1():S1465-71. PubMed ID: 26405909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-based optimization and performance assessment in optical coherence imaging.
    Rolland J; O'Daniel J; Akcay C; DeLemos T; Lee KS; Cheong KI; Clarkson E; Chakrabarti R; Ferris R
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jun; 22(6):1132-42. PubMed ID: 15984486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics.
    Zou W; Burns SA
    Opt Express; 2009 Oct; 17(22):20167-77. PubMed ID: 19997241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-reversal and model-based imaging in a THz waveguide.
    Musheinesh MA; Divin CJ; Fessler JA; Norris TB
    Opt Express; 2009 Aug; 17(16):13663-70. PubMed ID: 19654774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
    Bigelow CE; Iftimia NV; Ferguson RD; Ustun TE; Bloom B; Hammer DX
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1327-36. PubMed ID: 17429478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive optics optical coherence tomography in glaucoma.
    Dong ZM; Wollstein G; Wang B; Schuman JS
    Prog Retin Eye Res; 2017 Mar; 57():76-88. PubMed ID: 27916682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution retinal imaging through open-loop adaptive optics.
    Li C; Xia M; Li D; Mu Q; Xuan L
    J Biomed Opt; 2010; 15(4):046009. PubMed ID: 20799811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography.
    Li X; Han JH; Liu X; Kang JU
    Appl Opt; 2008 Sep; 47(27):4833-40. PubMed ID: 18806839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.