These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19655121)

  • 1. Goldfish and oscars have comparable responsiveness to dipole stimuli.
    Nauroth IE; Mogdans J
    Naturwissenschaften; 2009 Dec; 96(12):1401-9. PubMed ID: 19655121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi).
    Coombs S
    J Exp Biol; 1994 May; 190():109-29. PubMed ID: 7964388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of pressure fluctuations, sonic audition, is the dominant mode of dipole-source detection in goldfish (Carassius auratus).
    Dailey DD; Braun CB
    J Exp Psychol Anim Behav Process; 2009 Apr; 35(2):212-23. PubMed ID: 19364230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The overlapping roles of the inner ear and lateral line: the active space of dipole source detection.
    Braun CB; Coombs S
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1115-9. PubMed ID: 11079381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions.
    Chagnaud BP; Hofmann MH; Mogdans J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):249-63. PubMed ID: 17075719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli.
    Mogdans J; Bleckmann H; Menger N
    Brain Behav Evol; 1997; 50(5):261-83. PubMed ID: 9360004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coding of lateral line stimuli in the goldfish midbrain in still and running water.
    Engelmann J; Bleckmann H
    Zoology (Jena); 2004; 107(2):135-51. PubMed ID: 16351934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral line reception in still- and running water.
    Engelmann J; Hanke W; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):513-26. PubMed ID: 12209340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibratory sources as compound stimuli for the octavolateralis systems: dissection of specific stimulation channels using multiple behavioral approaches.
    Braun CB; Coombs S
    J Exp Psychol Anim Behav Process; 2010 Apr; 36(2):243-57. PubMed ID: 20384404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of running water on brainstem lateral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli.
    Kröther S; Bleckmann H; Mogdans J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jun; 190(6):437-48. PubMed ID: 14997333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole source encoding and tracking by the goldfish auditory system.
    Coombs S; Fay RR; Elepfandt A
    J Exp Biol; 2010 Oct; 213(Pt 20):3536-47. PubMed ID: 20889834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure.
    Smith ME; Coffin AB; Miller DL; Popper AN
    J Exp Biol; 2006 Nov; 209(Pt 21):4193-202. PubMed ID: 17050834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural responses of goldfish lateral line afferents to vortex motions.
    Chagnaud BP; Bleckmann H; Engelmann J
    J Exp Biol; 2006 Jan; 209(Pt 2):327-42. PubMed ID: 16391355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral discrimination of water motions caused by moving objects.
    Vogel D; Bleckmann H
    J Comp Physiol A; 2000-2001; 186(12):1107-17. PubMed ID: 11288823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli.
    Mogdans J
    J Fish Biol; 2019 Jul; 95(1):53-72. PubMed ID: 30873616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brainstem lateral line responses to sinusoidal wave stimuli in still and running water.
    Kröther S; Mogdans J; Bleckmann H
    J Exp Biol; 2002 May; 205(Pt 10):1471-84. PubMed ID: 11976358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of fish swimming mechanics and behaviour in altered flows.
    Liao JC
    Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1973-93. PubMed ID: 17472925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D-orientation with the octavolateralis system.
    Bleckmann H
    J Physiol Paris; 2004; 98(1-3):53-65. PubMed ID: 15477022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.
    Meyer G; Klein A; Mogdans J; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):639-53. PubMed ID: 22669431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.