These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19655372)

  • 1. Antisolvent membrane crystallization of pharmaceutical compounds.
    Di Profio G; Stabile C; Caridi A; Curcio E; Drioli E
    J Pharm Sci; 2009 Dec; 98(12):4902-13. PubMed ID: 19655372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based antisolvent crystallization.
    Chen D; Singh D; Sirkar KK; Pfeffer R
    Langmuir; 2015; 31(1):432-41. PubMed ID: 25552289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro dissolution enhancement of micronized l-nimodipine by antisolvent re-crystallization from its crystal form H.
    Zu Y; Li N; Zhao X; Li Y; Ge Y; Wang W; Wang K; Liu Y
    Int J Pharm; 2014 Apr; 464(1-2):1-9. PubMed ID: 24456674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):94-105. PubMed ID: 17981448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug.
    Indulkar AS; Gao Y; Raina SA; Zhang GG; Taylor LS
    Mol Pharm; 2016 Jun; 13(6):2059-69. PubMed ID: 27138900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives.
    Kumar R; Thakur AK; Banerjee N; Kumar A; Gaurav GK; Arya RK
    Drug Deliv Transl Res; 2023 Feb; 13(2):400-418. PubMed ID: 35953765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation.
    Dalvi SV; Dave RN
    Int J Pharm; 2010 Mar; 387(1-2):172-9. PubMed ID: 20026199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of solution nonideality of a pseudomorphic drug system through a comprehensive thermodynamic framework for the design of a crystallization process.
    Nordstrom FL; Rasmuson A; Sheikh AY
    J Pharm Sci; 2004 Apr; 93(4):995-1004. PubMed ID: 14999735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Int J Pharm; 2011 May; 410(1-2):175-9. PubMed ID: 21397674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation--classification and comparison with crystallization tendency from undercooled melts.
    Van Eerdenbrugh B; Baird JA; Taylor LS
    J Pharm Sci; 2010 Sep; 99(9):3826-38. PubMed ID: 20533435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pharmaceutical solubility Via NRTL-SAC and COSMO-SAC.
    Tung HH; Tabora J; Variankaval N; Bakken D; Chen CC
    J Pharm Sci; 2008 May; 97(5):1813-20. PubMed ID: 17786984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-Templated Antisolvent Spherical Crystallization of Hydrophilic and Hydrophobic Drugs with an in situ Formed Binder.
    Gu T; Yeap EWQ; Cao Z; Ng DZL; Ren Y; Chen R; Khan SA; Hatton TA
    Adv Healthc Mater; 2018 Feb; 7(3):. PubMed ID: 28961377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.
    Chen D; Sirkar KK; Jin C; Singh D; Pfeffer R
    Curr Pharm Des; 2017; 23(2):242-249. PubMed ID: 27784239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction.
    Tona RM; McDonald TAO; Akhavein N; Larkin JD; Lai D
    Lab Chip; 2019 Jun; 19(12):2127-2137. PubMed ID: 31114833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module.
    Fern JCW; Ohsaki S; Watano S; Pfeffer R
    Int J Pharm; 2018 May; 543(1-2):139-150. PubMed ID: 29551746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly supersaturated solutions of amorphous drugs approaching predictions from configurational thermodynamic properties.
    Matteucci ME; Miller MA; Williams RO; Johnston KP
    J Phys Chem B; 2008 Dec; 112(51):16675-81. PubMed ID: 19367943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.
    Paulino AS; Rauber G; Campos CE; Maurício MH; de Avillez RR; Capobianco G; Cardoso SG; Cuffini SL
    Eur J Pharm Sci; 2013 May; 49(2):294-301. PubMed ID: 23557843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of progesterone for pulmonary drug delivery.
    Ragab D; Rohani S; Samaha MW; El-Khawas FM; El-Maradny HA
    J Pharm Sci; 2010 Mar; 99(3):1123-37. PubMed ID: 19691108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.